Продольный срез проводящей ткани
Проводящие ткани
«В природе нет ничего бесполезного» — Мишель де Монтень
Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) — 117 метров в высоту. И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.
Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.
Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.
Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них. Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).
Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани — ксилемы (древесины). От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани — флоэмы (луба).
Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.
В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.
Ксилема (древесина)
Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна — древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.
- Трахеиды
Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.
Длинные трубки, представляющие собой слияние отдельных мертвых клеток «члеников» в единый «сосуд». Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.
Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.
Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.
Паренхимные клетки (древесинная паренхима)
Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.
Флоэма (луб)
Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или «складировать» на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод — дисахарид сахароза.
Эта ткань представлена ситовидными трубками, генез (от греч. genesis — происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма — из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.
Разберемся с компонентами, которые входят в состав флоэмы:
- Ситовидные элементы
Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток — «члеников», соединенных в единую цепь. Между «члениками» имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито — вот откуда берется название ситовидных трубок 🙂
Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.
Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.
Паренхимные элементы (лубяная паренхима)
Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.
По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.
Ниже вы найдете продольный срез тканей растения, изучите его.
Жилка
Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма — снизу. Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре. Существует два вида жилок:
- Открытые
Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.
Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.
Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.
Как вода поднимается от корней к листьям, против силы тяжести?
Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.
Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.
Работа верхнего концевого двигателя заключается в транспирации — испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.
©Беллевич Юрий Сергеевич
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Продольный срез проводящей ткани
Тема: Проводящие ткани
Материалы. Стебель тыквы (Cucurbita pepo); сернокислый анилин; постоянные микропрепараты: «Продольный срез древесины сосны (Pinus sylvestris)», «Корневище орляка (Pteridium aguilinum)».
Проводящая система растений состоит из ксилемы (древесины), осуществляющей восходящий ток воды и растворенных в ней минеральных веществ от корней к листьям и флоэмы — ткани, проводящей пластические вещества (нисходящий ток) от листьев к корням. Это сложные ткани, т. к. включают различные по структуре и функциональному значению анатомические элементы.
Проводящие ткани по происхождению могут быть первичными и вторичными. Первичные образуются в результате деятельности прокамбия , а вторичные — камбия.
Ксилему составляет три типа элементов: 1) собственно проводящие (трахеиды и сосуды); 2) механические (древесинные волокна или либриформ); 3) паренхимные.
Некоторые клетки этих тканей остаются живыми на протяжении всей жизни, а другие отмирают, сохраняя определенные функции.
Основными проводящими элементами ксилемы являются трахеиды и членики сосудов (трахеи). В зрелом состоянии оба типа элементов представляют собой более или менее вытянутые клетки, лишенные протопластов и имеющие одревесневшие вторичные оболочки.
Трахеиды — это прозенхимные клетки со скошенными концами. Они отличаются от сосудов тем, что не имеют перфораций. В трахеидах передвижение воды из клетки в клетку осуществляется, главным образом, через пары пор, поровые мембраны (замыкающая пленка пор), которые отличаются высокой проницаемостью для воды и растворенных веществ.
Членики сосудов (трахеи) — это наиболее специализированные водопроводящие элементы, представляющие собой длинные (до многих метров) полые трубки, состоящие из члеников. Они образуются из вертикального ряда прозенхимных меристематических клеток прокамбия. Их боковые стенки с возрастом одревесневают и неравномерно утолщаются, а поперечные — образуют сквозные отверстия (перфорации). Выделяют несколько типов утолщения боковых стенок сосудов — кольчатые, спиральные, лестничные и др.
У покрытосеменных растений в первичной ксилеме обычно развиваются трахеиды, а во вторичной — сосуды.
Флоэма, как и ксилема, состоит из трех типов тканей: 1) собственно проводящей (ситовидные клетки, ситовидные трубки); 2) механической (лубяные волокна); 3) паренхимной.
Наиболее высокоспециализированными элементами флоэмы являются ситовидные элементы. К их характерным особенностям относятся онтогенетически измененные протопласты с ограниченной метаболической активностью и система межклеточных контактов с соседними ситовидными элементами, осуществляемых посредством специализированных участков клеточной оболочки (ситовидных полей), пронизанных отверстиями (перфорациями).
По степени специализации ситовидных полей и особенностям их распределения ситовидные элементы классифицируются на ситовидные клетки и членики ситовидных трубок.
Ситовидная трубка представляет собой вертикальный ряд клеток, соединенных между собой концами посредством ситовидных пластинок. Каждая отдельная клетка, входящая в состав ситовидной трубки называется члеником ситовидной трубки. Оболочки их целлюлозные, первичные. Органические вещества движутся сверху вниз из клетки в клетку по дезорганизованным протопластам (смесь клеточного сока с цитоплазмой). Рядом с ситовидной трубкой обычно расположены сопровождающие клетки (клетки-спутники). Они тесно связаны с члениками ситовидной трубки своим происхождением и функцией, заключающейся в регуляции передвижения веществ по флоэме.
Ситовидные клетки лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра. Их ситовидные поля рассеяны на боковых стенках.
Задание 1. Рассмотреть трахеиды на постоянном микропрепарате продольного среза древесины сосны (Pinus sylvestris). Обратить внимание на форму и расположение клеток трахеид; типы пор и их расположение.
Последовательность работы. При малом увеличении видно, что вся древесина состоит из длинных прозенхимных клеток. Это трахеиды (рис. 40). Более широкие и тонкостенные трахеиды весенней древесины постепенно переходят в толстостенные трахеиды осенней древесины с узкой полостью.
Рис. 40. Трахеиды древесины сосны (Pinus sylvestris):
1 — окаймленная пора.
Рассматривая весенние трахеиды при большом увеличении, обратить внимание на то, что между ними нет перфораций, следовательно, вода проникает из трахеиды в трахеиду только через поры, которые расположены на радиальных стенках. Это окаймленные поры, в плане они видны в виде двух концентрических окружностей.
Задание 2. Приготовить временный микропрепарат продольного среза проводящего пучка стебля тыквы (Cucurbita pepo) в сернокислом анилине. Рассмотреть сосуды с разными типами утолщений вторичной оболочки (рис. 41). Сделать рисунок.
Рис. 41. Сосуды стебля тыквы (Cucurbita pepo):
А — пористый; Б — сетчатый; В — спиральный; Г — кольчатый.
Последовательность работы. При изготовлении среза обратить внимание на то, чтобы разрез прошел через середину одного из крупных проводящих пучков. Рассмотреть сосуды очень большого диаметра, расположенные ближе к центру стебля. Они обычно не помещаются целиком в толще среза, и на срезе видна длинная пустая полость сосуда, ограниченная с двух сторон узкими полосками стенки.
Микропрепарат рассмотреть при большом увеличении. Найти очень крупные сосуды, расположенные к центру и рассмотреть их поверхность. Обратить внимание на то, что она покрыта сетью утолщений (сетчато-пористые). Затем передвинуть микропрепарат на соседние сосуды, имеющие меньшие диаметры и найти на их поверхности пористые, спиральные и кольчатые утолщения (рис. 41). Кольчатые сосуды образуются раньше других, они очень тонкие и сильно растянуты в длину, вследствие роста стебля после их возникновения. После кольчатого сосуда и участка мелкоклеточной паренхимы видны ситовидные трубки с сопровождающими клетками. Зарисовать отдельные клетки сосудов с разными типами утолщения клеточной оболочки.
Задание 3. Рассмотреть сосуды, имеющие лестничные утолщения оболочки на постоянном микропрепарате продольного среза корневища папоротника-орляка (Pteridium aguilinum) (рис. 42).
Рис. 42. Лестничный сосуд корневища папоротника-орляка (Pteridium aquilinum):
1 — щелевидная пора.
Последовательность работы. Обратить внимание на горизонтальные промежутки между перекладинами — щелевидные поры и наклонные перегородки, разделяющие членики сосудов с щелевидными перфорациями.
Задание 4. Используя микропрепарат из задания 2 изучить строение ситовидной трубки на продольном срезе стебля тыквы. Сделать рисунок (рис. 43).
Рис. 43. Часть проводящего пучка стебля тыквы (Cucurbita pepo) в продольном разрезе:
1 — ситовидная трубка, 2 — ситовидная пластинка, 3 — сопровождающая клетка, 4 — камбий, 5 — сетчато-пористый сосуд.
Последовательность работы. При большом увеличении микроскопа найти ситовидные трубки, расположенные ближе к периферии стебля, внутрь от слоя древесинных волокон. Их можно узнать по ситовидным пластинкам. Затем рассмотреть клетки-спутники, находящиеся между ситовидными трубками. Обратить внимание на число клеток, соответствующих каждому членику ситовидной трубки. Зарисовать ситовидную трубку с клетками-спутниками.
1. По каким проводящим тканям осуществляется передвижение органических веществ, а по каким — минеральных?
2. В чем сходство онтогенеза ситовидных трубок и сосудов?
3. Что такое сопровождающая клетка? Какие ее функции?
4. В чем отличие ситовидных трубок от сосудов?
5. Как долго функционируют ситовидные трубки и сосуды и с чем связано прекращение их деятельности?
6. В чем отличие сосудов от трахеид?
7. Почему кольчатые и спиральные сосуды свойственны молодым органам растений, а пористые, сетчато-пористые, лестничные — более старым?
8. Какие сосуды имеют наименьший диаметр и какие наибольший?
9. Какие перфорации между члениками сосудов являются более примитивными?
3.7. Проводящие ткани
Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях. По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток). По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веще ств по флоэме называют током ассимилятов.
Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.
Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом. Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.
Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов — древесинных волокон (волокон либриформа) и элементов основной ткани — древесинной паренхимы.
Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов – трахеиды и членики сосудов (рис. 3.26 ).
Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.
Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).
Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.
Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными и точечно-поровыми ( рис. 3.27).
Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов : 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.
Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27 ) можно рассматривать как морфогенетический, эволюционный ряд.
Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.
В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.
Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.
Флоэма (луб) состоит из проводящих — ситовидных — элементов, сопровождающих клеток (клеток-спутниц), механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы.
В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий – ситовидные поля, через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок.
Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.
У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки (рис. 3.28 ). Они состоят из многих отдельных клеток – члеников, расположенных один над другим. Ситовидные поля двух соседних члеников образуют ситовидную пластинку. Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).
В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.
Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.
Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.
Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.
В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называют проводящими пучками. Различают несколько типов проводящих пучков (рис. 3.29 ).
Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.
В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычны коллатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным. Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).
Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным, или амфивазальным. Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным, или амфикрибральным. Центроксилемные пучки обычны у папоротников.
Рис. 3.29. Типы проводящих пучков : 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.
Многие авторы выделяют радиальные пучки. Ксилема в таком пучке располагается в виде лучей от центра по радиусам, а флоэма – между лучами ксилемы. Радиальный пучок – характерный признак корня первичного строения.
Проводящие ткани. Ксилема
Основным элементом ксилемы у высшего двудольного растения является сосуд.
Как и у ситовидных трубок, составляющие сосуд клетки-членики расположены наподобие звеньев цепи вдоль длинной оси органа, соединяясь друг с другом своеобразно модифицированными поперечными стенками. Членики сосудов во многих случаях также вытянуты, но не менее часто бывают и короткими.
Поперечные перегородки между члениками сосуда к тому времени, когда сосуд окончательно сформируется, продырявливаются, и протопласты клеток, формирующих сосуд, разрушаются. Если поперечные стенки члеников сосуда разрушаются полностью, образуется одно крупное отверстие, называемое простой перфорацией. Известны также и множественные перфорации, образующиеся в том случае, если оболочка не разрушается, а продырявливается во многих местах. Отверстия при множественной перфорации разбросаны в беспорядке (сетчатая перфорация) или располагаются правильными рядами (лестничная перфорация).
Утолщения на стенках сосудов могут быть весьма различного характера. Наиболее просто устроены спиральные утолщения, а также родственные им кольчатые утолщения. И те и другие свойственны наиболее рано возникающим анатомическим элементам ксилемы у высших растений. Древние формы растений с определенно выраженной ксилемой также имеют ксилемные элементы со спирально-кольчатыми утолщениями. От сосудов со спиральными утолщениями ряд постепенных переходов ведет к сосудам с округлыми окаймленными порами. На продольных разрезах через ксилему осевого органа какого-либо двудольного можно найти почти все градации утолщений. На рисунке при рассмотрении справа налево видны два крайних сосуда со спиральными утолщениями (4), причем более тонкий из них имеет несколько сильнее растянутые завороты спирали. Следующий сосуд (3) содержит так называемые лестничные утолщения. Сосуд (2) имеет вполне оформленные окаймленные поры— округлые и многочисленные. Это — пористый сосуд. Иногда переход от сосудов со спиральными утолщениями к пористым сосудам бывает очень резок (например, в стебле льна), чем нарушается онтогенетическая последовательность образования утолщений. Тип утолщений в значительной мере зависит от того, какой анатомический элемент находится по соседству с сосудом.
На рисунке изображен сосуд, к которому с одной стороны (3) примыкает паренхима, а с другой — либриформ (2), у которого вообще образуется мало пор.
Там, где к сосуду примыкает либриформ, на стенках сосуда пор совсем не образуется, а со стороны паренхимы стенки сосуда усеяны порами. Еще значительнее усложняется характер утолщений на стенках сосудов при соприкосновении их с клетками сердцевинных лучей, в свою очередь, достаточно разнообразных по очертаниям и структуре.
Кроме сосудов с продырявленными поперечными перегородками (перфорациями), в ксилеме большинства растений существуют другие водопроводящие элементы — трахеиды. Каждая трахеида — это отдельная мертвая прозенхимная клетка с более или менее заостренными концами. В отличие от сосудов поперечные стенки трахеид не разрушаются и перфораций не возникает. Утолщения стенок трахеид совершенно такие же, как и стенок сосудов. Среди трахеид встречаются клетки и со спиральными утолщениями, и с округлыми окаймленными порами. Трахеиды в некоторой мере обладают способностью к скользящему росту и могут врастать или между другими анатомическими элементами, или между другими трахеидами. Скользящим ростом обладают лишь молодые формирующиеся анатомические элементы.
Между трахеидами и либриформом существует ряд переходных форм. У семенных растений трахеиды в большем или меньшем количестве в зависимости от вида перемежаются с сосудами и другими элементами ксилемы. У папоротников, плаунов, хвощей и голосеменных растений трахеиды составляют почти всю массу ксилемы.
Как сосуды, так и трахеиды служат для проведения воды по растению в различных направлениях. Вместе с водой проводятся различные растворимые в воде минеральные и органические вещества. Наравне с различными солями, поглощаемыми корнями из почвы, по водоносным элементам, особенно по сосудам, могут передвигаться и растворы сахаров. Например, весной, в период так называемого весеннего «плача» растений, пасока, содержащая, кроме других веществ, и сахара, продвигается в значительной мере по сосудам.
Подобно тому, как у ситовидных трубок имеются спутники, к сосудам часто примыкают паренхимные клетки, образующие обкладку сосуда. В зависимости от общей структуры ксилемы обкладка состоит или из одних паренхимных клеток, или в нее входят еще либриформ, трахеиды и более мелкие сосуды. Паренхима не только окружает сосуды, но и рассеяна среди ксилемных элементов; в последнем случае она называется древесинной паренхимой. Клетки ее имеют одревесневшие оболочки с простыми порами, но со стороны сосуда им соответствует окаймленная пора, которая сочетается с каждой простой порой. Протопласт клеток древесинной паренхимы очень долго не разрушается. Клетки паренхимы в ксилеме служат местом отложения запасов, так же как и паренхима, входящая в состав других тканей.
Иногда и на оболочках древесинной паренхимы развиваются окаймленные поры. Такие клетки не сохраняют протопласт в жизненном состоянии, так как служат передаточными пунктами в продвижении воды к соответствующим тканям.
Клетки паренхимы, непосредственно примыкающие к сосуду, находятся в тесном контакте с растворами, заполняющими сосуды, и в зависимости от условий то конденсируют в своих пластидах поступающие к ним углеводы и прочие вещества, то отдают эти вещества в полость сосуда. Специальными наблюдениями установлено, что в клетках паренхимы, примыкающих к сосуду и сообщающихся с ним через односторонние окаймленные поры, крахмал, сахар и прочие пластические вещества в течение года находятся в различных состояниях. Например, осенью и перед распусканием листьев крахмал в таких клетках находится в изобилии, а после распускания листьев содержание его значительно уменьшается. В клетках, не сообщающихся с сосудами при помощи пор, изменение состояния запасных веществ происходит очень медленно по сравнению с изменением их в клетках, сообщающихся с сосудами порами.
Вследствие того, что клетки древесинной паренхимы тесно связаны с сосудами и притом не только анатомически, но и физиологически, сосуды нельзя рассматривать совершенно изолированно. Это — система, в которой сосуд является только местом для продвижения весьма разведенных водных растворов. Предполагают, что состав растворов, а также отчасти направление их движения регулируются деятельностью паренхимных клеток, находящихся в непосредственном контакте с сосудам или входящих с ним в контакт при посредстве звеньев клеток. В сосудах многих растений, особенно древесных, сахар содержится не только весной, но и в другие времена года и иногда в заметных количествах (например, в условиях климата Закавказья — зимой). В зависимости от ряда условий клетки древесинной паренхимы, примыкающие к сосуду, могут образовывать выросты в полость сосудов — тиллы. Тиллы с течением времени разрастаются, заполняют всю полость сосуда, оболочки их одревесневают, и они становятся полным подобием создавшей их древесинной паренхимы, отличаясь от ее клеток лишь размерами и разнообразием очертаний. В таких тиллах откладываются те же запасные пластические вещества, что и в клетках древесинной паренхимы. Таким образом, сосуд с момента образования тилл тоже становится местом отложения запасных веществ.
Иногда тиллы весьма тесно заполняют полость сосуда, сильно сжимая друг друга и приобретая исключительно толстые оболочки, пронизанные поровыми каналами.
В этих случаях клетки тилл уже не похожи на паренхиму, расположенную вне полости сосуда. В некоторых редких случаях клетки тилл имеют облик и структуру типичных каменистых клеток. Тогда, плотно забивая сосуды и наполняясь различного рода отложениями, они придают ксилеме большую твердость. Особенно велико значение тилл в процессе формирования так называемого ядра древесины. Изредка тиллы образуются и у хвойных в трахеидах и смоляных ходах.
Клетки древесинной паренхимы в направлении, параллельном длинной оси органа, редко расположены беспорядочно, особенно клетки, не соприкасающиеся непосредственно с сосудом, с его стенкой. Такие клетки образуют подобие звеньев цепи, растянутой вдоль длинной оси органа. Но вертикальные ряды, составленные из клеток древесинной паренхимы, — короткие, оканчивающиеся с обеих концов клетками с заостренными окончаниями, подобно трахеидам.
Древесинная паренхима многолетних растений по своему расположению в толще годичного слоя подразделяется на два типа: паратрахеальную, приуроченную к сосудам, и апотрахеальную, не связанную с сосудами. В пределах паратрахеального типа различают вазицентрическую, крыловидную и сомкнуто-крыловидную паренхиму. Эти термины имеют чисто описательное значение и определяют характер расположения клеток вокруг сосудов.
В пределах апотрахеального типа по расположению составляющих элементов различают диффузную, метатрахеальную и терминальную паренхимы. Диффузная паренхима на поперечных срезах обнаруживается в виде одиночных клеток, рассеянных среди клеток лучей. В продольном направлении клетки диффузной паренхимы располагаются в виде цепочек. В том случае, если несколько таких цепочек располагаются рядом, древесинная паренхима называется метатрахеальной. На поперечных срезах она имеет вид тангентальных полосок, состоящих из одного ряда клеток. У многих древесных растений с сезонным приростом древесинная паренхима развивается только к концу прироста. При этом она формируется в виде более или менее сплошного слоя вокруг кольца прироста. Такая паренхима называется терминальной.
Клетки древесинной паренхимы образуются так называемыми веретенообразными клетками камбия. Если клетка камбия непосредственно дифференцируется в паренхимную клетку, последняя имеет веретеновидную форму, напоминая элементы либриформа. Такие клетки носят название заменяющих волокон и отличаются от либриформа простыми округлыми порами и остающимся в жизнедеятельном состоянии протопластом.
Однако чаще перед образованием паренхимы клетка камбия несколько раз делится в одном направлении; возникшая цепочка клеток дифференцируется как тяжевая паренхима. Сопоставляя анатомические элементы флоэмы с анатомическими элементами ксилемы, можно убедиться, что и флоэма и ксилема составлены из элементов трех основных типов, приспособленных к выполнению соответствующих функций: запасающей, проводящей и механической. Между этими тремя основными типами существуют переходные как в структурном, так и в функциональном отношении. Так, анатомическим элементом, предназначенным преимущественно для отложения и хранения различных запасных веществ, является паренхима, лубяная во флоэме и древесинная в ксилеме. Очертания паренхимных клеток в обоих участках проводящей системы разнообразны; причем различие заключается в особенностях строения оболочек. Клетки лубяной паренхимы имеют целлюлозные оболочки, а клетки древесинной паренхимы — одревесневшие. Поры в обоих типах паренхимы простые, если протопласт клетки находится в жизнедеятельном состоянии. В клетках древесинной паренхимы с отмершим протопластом поры могут быть и окаймленными, причем степень развития и рисунок окаймленных пор у таких клеток различны.
Механическая система как во флоэме, так и в ксилеме представлена волокнами. У некоторых растений в коре встречаются паренхимные толстостенные клетки (каменистые), но в самой флоэме таких клеток не образуется; они характерны для коровых участков сердцевинных лучей.
Между лубяными волокнами флоэмы и либриформом структурная аналогия еще более полная, чем между анатомическими элементами запасающей и проводящей систем. Оболочки лубяных волокон также нередко одревесневают, уподобляясь в этом отношении либриформу. Поры у таких лубяных волокон щелевидные и косые (вариант простых пор), вполне аналогичные порам клеток либриформа.
Оболочки механических элементов флоэмы и ксилемы толстостенные. У некоторых растений как лубяные волокна, так и волокна либриформа имеют поперечные перегородки.
Вообще анатомические элементы флоэмы и ксилемы, подобно веем элементам растительных тканей, очень пластичны и представлены рядом переходных форм. Особенно много переходных
форм наблюдается в узлах стеблей — в тех местах, где от стебля отходят листья и ветки, а также в местах поранения, где происходит заживление ран.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Секреты тканей растений
Основное содержание.
- Классификация проводящей ткани.
- Характеристика ксилемы.
- Характеристика флоэмы.
В растительном организме, так же как и в организме животных имеется транспортные системы, обеспечивающие доставку питательных веществ по назначению. На сегодняшнем занятии разговор пойдёт о проводящих тканях растения.
Проводящие ткани – ткани, по которым происходит массовое передвижение веществ, возникли как неизбежное следствие приспособление к жизни на суше. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по сосудам древесины (ксилемы), а нисходящий – по ситовидным элементам луба (флоэмы).
1. Восходящий ток веществ по сосудам ксилемы 2. Нисходящий ток веществ по ситовидным трубкам флоэмы
Клетки проводящей ткани характеризуются тем, что они вытянуты в длину и имеют форму трубочек с более или менее широким диаметром (в общем, напоминают сосуды у животных).
Существуют первичные и вторичные проводящие ткани.
Вспомним классификацию тканей на группы по форме клеток.
Ксилема и флоэма – это сложные ткани, состоящие из трёх основных элементов.
Таблица «Основные элементы ксилемы и флоэмы»
Проводящие элементы ксилемы.
Наиболее древними проводящими элементами ксилемы являются трахеиды (рис.1)– это вытянутые клетки с заостренными концами. Они дали начало древесинным волокнам.
Трахеиды имеют одревесневшую клеточную стенку с различной степенью утолщения, кольчатую, спиралевидную, точечную, пористую и т.д. форму (рис. 2). Фильтрация растворов происходит через поры, поэтому передвижение воды в системе трахеид совершается медленно.
Трахеиды встречаются у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных, являются существенными проводящими элементами ксилемы. Прочные стенки трахеид позволяют им выполнять не только водопроводящие функции, но и механические. Часто они являются единственными элементами, придающими органу прочность. Так, например, у хвойных деревьев в древесине отсутствует специальная механическая ткань, и механическая прочность обеспечивается трахеидами.
Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.
Рис. 2 Трахеиды и их расположение относительно друг друга
Рис. 2 Трахеиды и их расположение относительно друг друга
Сосуды – характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединяющихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе развития, носит название первичная ксилема; она закладывается в корнях и на верхушках побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок.
Рис. 3 Расположение первичных и вторичных проводящих тканей в корне
Расположение первичных и вторичных проводящих тканей в стебле
Первые по времени образования сосуды (рис. 3) – протоксилема – закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки ещё продолжают вытягиваться. Зрелые сосуды протоксилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки ещё не сплошь одревеснели – лигнин (особое органическое вещество, вызывающее одревесневание стенок клеток) откладывается в них кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня.
Рис. 4 утолщения клеточных стенок сосудов
С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают своё развитие в зрелых частях органа, — формируется метаксилема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мёртвые, жёсткие, полностью одревесневшие трубки. Если бы их развитие завершилось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.
Утолщения клеточных стенок сосудов так же, как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми (рис. 4 и рис. 5).
Рис. 5 Типы перфорации сосудов
Длинные полые трубки ксилемы – идеальная система для поведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревесневающие части клеточной стенки. Вследствие одревесневания клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением. Вторую свою функцию – механическую – ксилема также выполняет благодаря тому, что она состоит из ряда одревесневших трубок.
Проводящие элементы флоэмы. Ситовидные трубки образуются из прокамбия в первичной флоэме ( протофлоэма) и из камбия во вторичной флоэме ( метафлоэма). По мере того как растут окружающие её ткани, протофлоэма растягивается и значительная её часть отмирает, перестает функционировать. Метафлоэма созревает уже после того, как закончится растяжение.
Членики ситовидных трубок имеют весьма характерное строении. У них более тонкие клеточные стенки, состоящие из целлюлозы и пектиновых веществ, и этим они напоминают паренхимные клетки, однако их ядра при созревании отмирают, а от цитоплазмы остаётся только тонкий слой, прижатый к клеточной стенке. Несмотря на отсутствие ядра, членики ситовидных трубок остаются живыми, но их существование зависит от примыкающих к ним клеток-спутниц, развивающихся из одной с ними меристематической клетки (рис. 6).
Вопрос: — Какие клетки животных, являясь безъядерными, также остаются живыми?
Членик ситовидной трубки и его клетка-спутница составляют вместе одну функциональную единицу; у клетки-спутницы цитоплазма очень густая и отличается высокой активностью, на что указывает присутствие многочисленных митохондрий и рибосом. В структурном и функциональном отношении клетка-спутница и ситовидная трубка тесно связаны и совершенно необходимы для их функционирования: в случае гибели клеток-спутников погибают и ситовидные элементы.
Рис. 6 Ситовидная трубка и клетка спутница
Характерной чертой ситовидных трубок является наличие ситовидных пластинок (рис. 7). Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе. Ситовидная пластинка возникает на месте соединения торцевых стенок двух соседних члеников ситовидных трубок. Вначале через клеточные стенки проходят плазмодесмы, но затем их каналы расширяются и образуют поры, так что торцевые стенки приобретают вид сита, через которое раствор перетекает из одного членика в другой. В ситовидной трубке ситовидные пластинки располагаются через определённые промежутки, соответствующие отдельным членикам этой трубки.
Рис. 7 Ситовидные пластинки ситовидных трубок
Основные понятия: Флоэма (протофлоэма, метафлоэма), ситовидные трубки, клетки-спутницы. Ксилема (протоксилема, метаксилема) трахеиды, сосуды.
Ответьте на вопросы:
- Чем представлена ксилема у голосеменных и покрытосеменных растений?
- В чём заключается отличие в строении флоэмы у данных групп растений?
- Объясните противоречие: сосны начинают вторичный рост рано и образуют много вторичной ксилемы, но растут медленней и уступают в росте лиственным породам.
- В чём заключается более упрощённое строение древесины хвойных?
- Почему сосуды являются более совершенной проводящей системой, чем трахеиды?
- Чем вызвана необходимость образования утолщений на стенках сосудов?
- В чём заключаются принципиальные различия между проводящими элементами флоэмы и ксилемы? С чем это связано?
- Какова функция клеток-спутниц?
Проводящие ткани
Состав проводящих тканей. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной. Трахеиды стебля сосны обыкновенной. Проводящие пучки стебля растений (кукурузы обыкновенной, подсолнечника однолетнего, тыквы обыкновенной).
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной (Cucurbita pepo L.)
2. Трахеиды стебля сосны обыкновенной (Pinus sylvestris L.)
3. Проводящие пучки стебля кукурузы обыкновенной (Zea mays L.), подсолнечника однолетнего (Helianthus annuus L.) (или кирказона обыкновенного (Aristolochia clematitis L.)), тыквы обыкновенной (Cucurbita pepo L.)
Основные понятия по теме
Ксилема служит для передвижения воды и минеральных веществ ко всем органам растения («восходящий ток»). Она состоит из сосудов, трахеид, древесинной паренхимы и либриформа (древесинные волокна).
Трахеиды — мертвые прозенхимные клетки с утолщенными одревесневшими оболочками, несущими поры, часто окаймленные. Фильтрация растворов из одной трахеиды в другую происходит через эти поры. Сосуды, или трахеи, состоят из многих клеток, которые называются члениками сосуда. Поперечные перегородки между члениками растворяются и возникают перфорации (сквозные отверстия). По таким полым трубкам растворы передвигаются значительно легче, чем по трахеидам. По характеру утолщений клеточных стенок члеников сосудов различают спиральные, кольчатые, лестничные, сетчатые, точечные сосуды.
У многих растений с возрастом сосуды закупориваются тиллами — паренхимными клетками, которые проникают в сосуд через поры в стенках, разрастаются и закупоривают его, делают непроходимым (тиллы развиваются в сосудах дуба, акации, ясеня).
Паренхимные клетки рассеяны по всей ксилеме или примыкают к сосудам, образуя обкладку. Клетки древесинной паренхимы несколько вытянуты по оси органа, оболочки их слегка утолщаются, могут одревесневать. Либриформ — мертвые клетки с одревесневшими оболочками, создающие опору и защиту трахеальным и паренхимным элементам ксилемы.
По флоэме органические вещества, синтезирующиеся в листьях, движутся ко всем органам растения («нисходящий ток»). Она состоит из ситовидных трубок, клеток-спутниц, лубяной паренхимы и лубяных волокон.
Проводящими элементами являются ситовидные трубки, представляющие собой вертикальный ряд живых клеток (члеников). Их поперечные стенки пронизаны перфорациями (ситовидные пластинки). Стенка членика целлюлозная, ядра в зрелом состоянии нет. Рядом с ситовидной трубкой обычно расположена одна или несколько сопровождающих клеток (клеток-спутниц). Они связаны с ситовидными элементами плазмодесмами и обеспечивают регуляцию передвижения веществ по флоэме.
Лубяное волокно морфологически сходно с древесинным. Паренхима во флоэме располагается рассеяно и вместе с ситовидными трубками составляет мягкий луб, участки лубяного волокна — твердый луб.
Тяжи ксилемы и флоэмы объединяются в проводящие или сосудисто-волокнистые пучки. По структуре проводящие пучки могут быть полными и неполными (состоят только из элементов флоэмы или ксилемы), открытыми (между проводящими тканями располагается камбий, в результате чего пучок приобретает способность к вторичному утолщению) и закрытыми (прокамбий полностью дифференцируется и превращается в первичные проводящие ткани — у однодольных). В зависимости от взаимного расположения флоэмы и ксилемы различают пучки нескольких типов:
коллатеральные — флоэма располагается кнаружи, а ксилема — к центру органа. Коллатеральные пучки характерны для большинства однодольных и двудольных растений;
биколлатеральные — в таком пучке различают два участка флоэмы — наружный и внутренний. Эти пучки можно видеть в стеблях растений из семейства тыквенных, пасленовых, колокольчиковых, астровых.
концентрические — ксилема замкнутым кольцом окружает флоэму (амфивазальные пучки — у однодольных), либо наоборот, — флоэма окружает ксилему (амфикрибральные — у папоротников).
радиальные — участки флоэмы и ксилемы лежат по разным радиусам и не соприкасаются, их разделяют участки паренхимы. Встречаются в корнях однодольных и двудольных растений.
Практическое занятие
Материалы и оборудование: постоянные микропрепараты: продольные срезы стебля тыквы, радиальные и тангенциальные срезы стебля сосны, поперечные срезы стебля кукурузы обыкновенной, кирказона обыкновенного (или подсолнечника однолетнего), тыквы обыкновенной. Практикумы по анатомии и морфологии растений, таблицы.
Работа 1. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной (Cucurbita pepo L.)
2. Зарисовать при большом увеличении микроскопа ситовидную трубку с ситовидными пластинками, сосуды с кольчатыми и спиральными утолщениями стенок и сосуды с разными типами поровости (рисунок 7.1). Отметить на рисунке все части проводящих элементов.
проводящая ткань флоэма ксилема
Рисунок 1 — Проводящие ткани тыквы (Cucurbita pepo): 1 — ситовидные трубки, 2 — клетки-спутницы, 3 — ситовидная пластинка, 4 — камбий, 5 — сетчато-пористый сосуд, 6 — пористый сосуд, 7 — сетчатый сосуд, 8 — спиральный сосуд, 9 — кольчатый сосуд (из Г.А. Бавтуто, Л.М. Ерей, 2002)
Работа 2. Трахеиды стебля сосны обыкновенной (Pinus sylvestris L.)
2. Сравнить изученный препарат с изображением на рисунке 7.2; зарисовать 2-3 трахеиды в месте их соединения, отметив их скошенные концы, окаймленные поры, торус (утолщение на срединной пластинке напротив отверстия во вторичной оболочке).
Рисунок 2 — Трахеиды стебля сосны (Pinus sylvestris): А — радиальный срез; Б — тангенциальный срез; 1 — окаймленные поры, 2 — оболочка трахеиды, 3 — скошенные концы трахеид, 4 — торус (из Г.А. Бавтуто, Л.М. Ерей, 2002)
Работа 3. Проводящие пучки стебля кукурузы обыкновенной (Zea mays L.), подсолнечника однолетнего (Helianthus annuus L.) (или кирказона обыкновенного (Aristolochia clematitis L.)), тыквы обыкновенной (Cucurbita pepo L.)
2. Выяснить: а) взаимное расположение ксилемы и флоэмы (тип пучка); б) какие элементы входят в состав пучков; в) наличие камбия (открытый — закрытый; г) тип обкладки пучка (паренхимная. склеренхимная).
3. Сравнить данные, полученные на основании проведенного анализа с изображениями на рисунках 7.3, 7.4, 7.5.
4. Зарисовать: а) закрытый коллатеральный проводящий пучок кукурузы обыкновенной; б) открытый коллатеральный проводящий пучок подсолнечника (или кирказона обыкновенного); в) биколлатеральный проводящий пучок тыквы обыкновенной. Отметить: основную паренхиму, ксилему, флоэму, склеренхиму, камбий.
Рисунок 3 — Коллатеральный закрытый сосудисто-волокнистый проводящий пучок стебля кукурузы (Zea mays) в поперечном разрезе: 1 — основная паренхима, 2 — склеренхима, 3 — протофлоэма, 4 — метафлоэма, 5 — древесная паренхима, 6 — пористые сосуды, 7 — спиральный сосуд, 8 — кольчатый сосуд, 9 — воздушная полость (из Н.С. Киселева, Н.В. Шелухин, 1969)
Рисунок 4 — Коллатеральный открытый сосудисто-волокнистый проводящий пучок стебля подсолнечника (Helianthus annuus) в поперечном разрезе: 1 — основная паренхима, 2 — склеренхима, 3 — флоэма, 4 — камбий, 5 — вторичная ксилема, 6 — первичная ксилема, 7 — перимедулярные волокна (из Н.С. Киселева, Н.В. Шелухин, 1969)
Рисунок 7.5 — Биколлатеральный сосудисто-волокнистый проводящий пучок стебля тыквы (Cucurbita pepo) в поперечном разрезе: 1 — основная паренхима, 2 — наружная флоэма, 3 — камбий, 4 — вторичная ксилема, 5 — первичная ксилема, 6 — внутренняя флоэма (из Н.С. Киселева, Н.В. Шелухин, 1969)
Вопросы для самоконтроля
2. Какие гистологические элементы входят в состав ксилемы и какова их функция?
3. По каким признакам можно классифицировать сосудисто-волокнистые проводящие пучки?
4. Какие типы проводящих пучков характерны для стеблей однодольных и двудольных растений?
Литература
1. Бавтуто, Г.А. Ботаника. Морфология и анатомия растений / Г.А. Бавтуто, В.М. Еремин — Мн.: Высшая школа, 1997. — С.301 — 307.
2. Бавтуто, Г.А. Практикум по анатомии и морфологии растений: учеб. пособие / Г.А. Бавтуто, Л.М. Ерей. — Мн.: Новое знание, 2002. — С.107 — 121.
3. Ботаника: Морфология и анатомия растений: учеб. пособие для студентов пед. ин-тов по биолог. и хим. спец. / А.Е. Васильев [и др]; — 2-е изд., перераб. — М.: Просвещение, 1988. — C.123 — 129.
4. Киселева, Н.С. Атлас по анатомии растений / Н.С. Киселева, Н.В. Шелухин; под ред. С.В. Калишевича. — Мн.: Вышэйш. школа, 1969. — С.102 — 129.
Размещено на Allbest.ru
Подобные документы
Ткани высших растений (покровные, проводящие, механические, основные, выделительные). Строение растения и функции его органов: корня, стебля, листа, побега и цветка. Разновидности корневых систем. Роль цветка как особой морфологической структуры.
презентация [8,1 M], добавлен 28.04.2014
Почка как зачаточный побег. Первичное строение стебля. Строение апекса побега. Функции стебля: опорная и проводящая. Древесина голосеменных и покрытосеменных. Закладка и работа камбия. Схема строения стебля кирказана. Гистологические элементы древесины.
презентация [8,6 M], добавлен 12.02.2015
Морфологические параметры белки обыкновенной. Распространение и кормовая база белки обыкновенной в Свободненском районе Амурской области. Защитно-гнездовые свойства охотничьих угодий Свободненского района для белки обыкновенной. Методы учета численности.
дипломная работа [95,4 K], добавлен 21.11.2009
Природно-климатические условия Национального парка «Бузулукский бор». Организация, характеристика и состояние лесного фонда. История создания географических культур сосны обыкновенной. Различия в реакции климатипов на изменения метеорологических факторов.
дипломная работа [1007,4 K], добавлен 13.06.2014
Стебель — удлинённый побег высших растений, служащий механической осью, выполняющий роль производящей и опорной базы для листьев, почек, цветков. Определение строения древесного стебля расположением проводящих пучков. Изучение основ стелярной теории.
презентация [8,6 M], добавлен 30.01.2015
Общая характеристика голосеменных — группы семенных растений, занимающей промежуточное положение между папоротниками и цветковыми растениями. Строение сосны обыкновенной и ее шишек. Сравнение признаков сосны и ели. Особенности можжевельника и лиственницы.
презентация [1,5 M], добавлен 26.03.2012
Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.
презентация [14,0 M], добавлен 15.04.2011
Размножение обыкновенной щуки. Систематическое положение и географическое положение. Морфологические признаки, экология обитания, питание, хозяйственное значение. Развитие личинок и мальков. Характеристика зрелости половых продуктов. Темпы весового роста.
курсовая работа [3,9 M], добавлен 18.07.2014
Особенности внешнего вида, образа жизни большой синицы и обыкновенной лазоревки, их сравнительная характеристика. Биология птиц: внешний вид, пение, ареал, размножение, питание, систематика и подвиды. Распространение в лесах Волжско-Окского междуречья.
курсовая работа [1009,6 K], добавлен 26.06.2014
Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.
презентация [15,3 M], добавлен 27.03.2016