6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Потери давления в трубопроводах

Потери давления в трубопроводах

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Расчет потерь напора в трубопроводах

В процессе течения нефтепродуктов имеют место потери напора на трение hτ и местные сопротивления hMC.

Потери напора на трение

Потери напора на трение при течении ньютоновских жидкостей в круглых трубах определяются по формуле Дарси—Вейсбаха

где λ — коэффициент гидравлического сопротивления; L, D — соответственно длина и внутренний диаметр трубопровода; W — средняя скорость перекачки; g — ускорение силы тяжести.

Величина коэффициента гидравлического сопротивления λ в общем случае зависит от числа Рейнольдса Re = W • D/v и относительной шероховатости труб ε = kэ/D (здесь v — кинематическая вязкость нефтепродукта при температуре перекачки; кэ — эквивалентная шероховатость стенки трубы).

При ламинарном режиме перекачки (Re = ReKp) расчет λ выполняется по формуле Стокса

В переходной зоне (ReKp -4

Эквивалентная шероховатость kэ стальных труб

С незначительной коррозией после очистки

После нескольких лет эксплуатации

Сильно заржавленные или с большими отложениями

В зоне гидравлически гладких труб турбулентного режима (ReKp ReII) расчет λ обычно ведут по формуле Шифринсона

Нетрудно видеть, что формулы Стокса, Блазиуса и Шифринсона могут быть представлены зависимостью одного вида

где А, т — коэффициенты, величина которых для каждой зоны трения неизменна.

Однако формула Альтшуля к этому виду не приводится. Это исключает возможность решения гидравлических задач в общем виде.

Ту же задачу можно было решить следующим образом. При Re = ReI еще справедлива формула Блазиуса, а при Re = RеI уже можно пользоваться формулой Шифринсона. Учитывая, что переходные числа Рейнольдса Альтшулем рекомендовано находить по формулам:

для зоны смешанного трения получаем:

Поделив почленно получим:

Различие в выражениях для расчета коэффициента А объясняется тем, что в первом случае не было сделано необходимое алгебраическое преобразование

Среднеквадратичная погрешность аппроксимации В.ДБелоусова по сравнению с формулой Альтшуля составляет около 5%. Связано это, в частности, с тем, что ее автор не стремился сделать погрешность вычислений минимальной, а исходил из условия равенства коэффициентов X на границах зоны смешанного трения и соседних зон.

Автору совместно с аспиранткой Н.В. Морозовой удалось свести уравнение Альтшуля к виду со среднеквадратичной погрешностью 2,6%. Это было сделано следующим образом.

Представим формулу Альтшуля в виде

Недостатком данной записи является то, что расчетный коэффициент 0,11(68 + ε · Re) °- 25 является функцией числа Рейнольдса. Вместе с тем из формул следует, что в зоне смешанного трения справедливо неравенство

10 0 ’ 26 , а затем, используя метод наименьших квадратов, заново описали полученные точки выражением 0,206( ε · Re) 0 ’ 15 .

Подставив его получили искомую зависимость

Из нее видно, что в зоне смешанного трения турбулентного режима величины коэффициентов А и т равны 0,206 • е 0,15 и 0,1 соответственно. Среднеквадратичная погрешность расчетов по формуле относительно формулы Альтшуля — менее 3%, что меньше, чем по другим известным аппроксимациям.

Следует подчеркнуть, что учет наличия переходной зоны приводит к изменению критического числа Рейнольдса. Кроме того, А.Д. Альтшуль, строго говоря, для переходных чисел Рейнольдса рекомендует диапазоны

Чтобы уточнить величины Re кр , ReI ReII и найти величину Re.x,, воспользуемся следующим способом. При Re = ReKp еще справедлива формула Стокса» но в то же время уже справедлива формула Гипротрубопровода. То есть можно составить уравнение

Освобождаясь от знаменателя, получаем квадратное уравнение 0,16-10 -4 · Reкр-13 · 10 -4 · Reкp-64 = 0, единственным положительным корнем которого является Reкp

Рассуждая аналогично, можно найти все остальные характерные числа Рейнольдса. Приравняв формулы Гипротрубопровода и Блазиуса, получаем Reкp = 2800. Из равенства правых частей формулы Блазиуса и формулы находим, что ReI = 17,5/ε. Наконец, приравняв правые части формулы и формулы Шифринсона, несложно найти, что ReII = 531/ε.

В тех случаях, когда необходимо, чтобы зависимость потерь напора на трение от расхода Q была выражена в явном виде, удобно использовать обобщенную формулу Лейбензона

где β — расчетный коэффициент, равный

Формула получается подстановкой выражения в формулу Дарси—Вейсбаха .

Учитывая, что формулу Гипротрубопровода можно привести к виду

Рекомендуемые величины коэффициентов А, β и m

Почему возникает потеря давления в трубопроводе и как этого можно избежать

Каждый человек, решивший самостоятельно обустроить водоснабжения своего дома, должен быть готов к такой проблеме, как уменьшение напора внутри системы. Как правило, причина кроется в том, что падает общее давление воды в трубе: именно поэтому подбор мощности скважинного насоса должен осуществляться с особой тщательностью.

Почему падает напор в водопроводе

Когда жидкость двигается по трубопроводу, она встречает определенные препятствия на своем пути.

На внутреннее сопротивление водопровода оказывают влияние такие факторы:

  1. Внутренний диаметр трубы. Его уменьшение прямо пропорционально увеличению сопротивления.
  2. Скорость движения воды в системе. Чем она больше, тем сопротивление сильнее.
  3. Особенности покрытия трубы, которое находится в непосредственном контакте с водой. Потери давления в трубопроводе могут возникать по причине излишней шероховатости внутренней поверхности.

Следует сказать, что даже если речь идет о транспортировке воды по прямой трубе, все равно определенное торможение ее потока наблюдается. Чем более увеличивается протяженность водовода, тем более возрастает показатель суммарного сопротивления.

Читать еще:  Как организовать слив воды из бани

Потеря давления в прямых трубопроводах

Чтобы точно произвести необходимые расчеты, удобнее всего применить особые таблицы и формулы: они позволят получить наиболее точные параметры. Следует также взять во внимание, что питающие водопроводы в последнее время в основном монтируются из полимерных труб. Падение давления в трубопроводе данного типа наблюдается в заметно меньших масштабах.

Для данных изделий характерны следующие эксплуатационные преимущества:

  • Небольшой вес и удобная установка.
  • Антикоррозийная безопасность.
  • Отличные показатели гладкости используемых для изготовления данных труб полимеров. Благодаря этому удается заметно снизить внутреннее сопротивление системы. По этому параметру пластиковые водоводы примерно в 1,5 раза выгоднее металлических аналогов.

Как учитывать местные сопротивление

Наряду с линейными потерями внутри трубопроводов могут иметься так называемые «местные» сопротивления. Речь идет прежде всего об элементах, обеспечивающих разветвление и управление мощностью потока – тройниках, кранах, вентилях, угловых коленах, клапанах и т.п. На параметры потери внутри этих изделий влияет скорость потока жидкости и их конфигурация. Читайте также: «Какое должно быть давление в трубах водоснабжения – правила расчета».

Формула, по которой рассчитывается внутреннее сопротивление

Как определить потери напора в трубопроводе? Расход воды определяется такой формулой: Q = V×S. Расход воды здесь обозначается, как «Q» (м3/сек), площадь сечения трубы – как «S». Для обозначения скорости здесь используется буква «V» (м/сек). Для вычисления площади сечения используется классическая формула S = π×D2/4, где под «D» понимается диаметр водопроводной трубы. Читайте также: «Как рассчитать расход воды по диаметру трубы – теория и практика».

Когда расчеты искомых величин будут закончены, можно прийти к выводу о мизерности показателей местного сопротивления, при сравнении с общими (суммарными) потерями, вне зависимости от того, какие именно образцы используются. Сопротивление воды в трубах может немного возрасти, если повысить скорость потока: это происходит из-за того, что водный канал по своей узкой части начинает пропускать большой объем воды.

Потери воды в трубопроводах могу возрасти до значительных показателей. Чтобы этого не происходило, рекомендуется изначально комплектовать водопроводы изделиями с большим диаметром: впоследствии некоторые дополнительные финансовые траты с лихвой компенсируются. Это даст возможность вообще отказаться от учета местного сопротивления. Если же говорить об общих ситуациях, то параметры потери в водопроводной системе вычисляются с учетом расхода 2-4 м3 жидкости для местных сопротивлений. Когда приходится учитывать потери при прохождении прямолинейных участков, то уровень суммарных потерь может достигать примерно 5 м3.

Потери напора на трение по длине трубопровода

Равномерное движение жидкости наблюдается в тех случаях, когда живое сечение по длине потока постоянно (например, в напорных трубах постоянного диаметра).

Пи равномерном движении в трубах потери напора на трение hтр или по длине как при турбулентном, так и при ламинарном движении определяют для круглых труб по формуле Дарси — Вейсбаха:

(3.1)

а для труб любой формы сечения по формуле

(3.2)

В некоторых случаях используют также формулу

(3.3)

Потери давления на трение по длине определяются по формуле

(3.4)

В этих формулах:

λ— коэффициент гидравлического трения (безразмерный);

l, d, υ, R, dэ — соответственно длина участка трубы или канала, диаметр трубы, средняя скорость течения, гидравлический радиус и эквивалентный диаметр;

С — коэффициент Шези., Связанный с коэффициентом гидравлического трения λ зависимостям :

; .

Размерность коэффициента Шези м 1/2 /с.

Коэффициент гидравлического трения λ учитывает влияние на потерю напора по длине всех факторов, которые не получили отражения в формулах (3.1) и (3.4), но существенны для определения гидравлических сопротивлений. Важнейшими из этих факторов являются вязкость жидкости и состояние стенок трубы.

Эквивалентная шероховатость (кэ) различных труб Таблица 3.1

* После дроби даны средние значения.

Для турбулентного и ламинарного течения применяются различные формулы для определения коэффициента гидравлического трения.

Турбулентное значение. При турбулентном течении в напорных трубопроводах круглого сечения коэффициент гидравлического трения , входящий в формулу Дарси—Вейсбаха, зависит от двух безразмерных параметров, числа Рейнольдса Rе=υd/v и относительной шероховатости kэ/d т. е.

где kэ — равномерно-зернистая абсолютная шероховатость.

Под эквивалентной равномерно-зернистой шероховатостью понимают такую высоту выступов шероховатости, сложенной из песчинок одинакового размера, которая дает при подсчете по формуле (3.6) одинаковую с заданной шероховатостью величину λ . Значения kэ приведены в табл. 3.1

Для определения коэффициента гидравлического трения λ при турбулентном течении в чопорных трубопроводах рекомендуются следующие формулы:

1) формула Колбрука

( 3,6)

2) формула А. Д. Альтшуля

(3.7)

Формулы (3.6) и (3.7.) Получены с помощью полуэмпирической теории турбулентности [1] и действительны для всех однородных ньютоновских жидкостей. Расхождение между формулами (3.6) и (3.7) практически не превышает 2—3%.

Значения λ, вычисленные по формуле (3.7), могут быть найдены также по номограмме. По данным А. Д. Альтшуля при значении критерия зоны турбулентности

(3.8)

формула (3.6) приводится к формуле Прандтля — Никурадзе:

(3.9)

а формула (3.7) — к формуле Б. Л. Шифринсона:

(3.10)

Обе последние формулы справедливы для так называемых вполне шероховатых труб, сопротивление которых не зависит от числа Рейнольдса. В табл. 3.3 приведены значения λ, подсчитанные по формуле (3.10).

При значении критерия зоны турбулентности

(3.11)

формула (3.6) приводится к формуле Прандтля — Никурадзе:

(3.12)

а формула (3.7) – к формуле Блазиуса:

(3.13)

Эти формулы справедливы для гидравлически гладких труб, сопротивление которых не зависит от шероховатости.

В технических расчетах используют также и эмпирические формулы для определения коэффициента λ , действительные для строго определенных условий применения. К ним относятся формулы Ф. А. Шевелева:

которая действительна при Rе>920 000, и

(3.15)

где d—диаметр трубы, м;

ν— кинематическая вязкость жидкости, м 2 /с;

υ— средняя скорость течения, м/с.

Формулы (3.14) и (3.15) рекомендуется применять для расчета стальных и чугунных водопроводных труб больших диаметров (d = 600-—1200 мм) с учетом увеличения их сопротивления в процессе эксплуатации.

При определении коэффициента гидравлического трения для труб некруглого сечения можно пользоваться приведенными выше формулами, подставляя в них вместо диаметра d эквивалентный диаметр dэ или учетверенный гидравлический радиус 4R. При этом, например, формула (3.7) принимает вид

(3.16)

(3.17)

Найденное по этим формулам значение λ следует подставить в формулу (3.2) для определения потерь напора по длине.

Ламинарное течение. При ламинарном течении в круглых трубах коэффициент гидравлического трения вычисляют по формуле

(3.18)

а для труб любой формы сечения — по формуле

, (3.19)

где А — коэффициент, численное значение которого зависит от формы поперечного сечения трубы, а число Рейнольдса определяется по формуле

(3.20)

Значения коэффициента формы А и эквивалентного диаметра для труб с различной формой поперечного сечения приведены в приложении 17.

Подставляя формулу (3.18) в выражение (3.1), получаем зависимость для определения потерь напора по длине при ламинарном движении в круглых трубах в виде

(3.21)

Формула (3.21) получена теоретически Пуазейлем. В соответствии с этой формулой потери напора по длине при ламинарном течении прямо пропорциональны скорости в первой степени и не зависят от состояния стенок трубы (их шероховатости).

Примеры 3

Пример 3.1. Вентиляционная труба d =0,1 м (100 мм) имеет длину l=100 м

. Определить давление, которое должен развивать вентилятор, если

расход воздуха, подаваемый по трубе, Q=0,О78 м 3 /с. Давление на выходе р= pатм =101 кПа, Местных сопротивлений по пути не имеется. Температура воздуха 20°С.

Решение. Находим скорость воздуха в трубе:

Число Рейнольдса для потока воздуха в трубе при ν= I5,7 10 -6 м 2 /с

=69000.

Относительная шероховатость (по табл. З.1 kэ=0,2 мм)

Коэффициент гидравлического трения

λ =0,11 (kэ/d+68Rе) 0’25 =0,11 (0,002+0,001) 0.2 5 =0.0256.

По формуле (3.4) находим потери давления на трение (р=I,18 кг/м 3 ):

=1410 Па= 1,41 кПа.

Пример 3.2. Расход воды при температуре 10 0 С в горизонтальной трубе кольцевого сечения, состоящей из двух концентрических оцинкованных стальных труб (при kэ=0,15 мм),Q =0,0075 м 3 /с. Внутренняя труба имеет наружный диаметр d=0,075 м, а наружная труба имеет внутренний диаметр D =0,1 м. 1-Iайти потери напора на трение на длине трубы l=300 м.

Решение. Площадь живого сечения

(0,1 2 —О,075 2 )=0,0034 м 2 .

Смоченный периметр живого сечения

χ= π (0,075+0,1)=3,14*0,I75 =0,55 м.

dэ= 4R = 4 ω / χ=4*0/0034/0.55=2.48*10 -2 м.

Пример 3.3. Определить потери давления ∆Pл в магистралях гидропередач , если расходы жидкости = 0,002 , = 0,0002 , диаметры трубопроводов d1 = 0,005 м, d2 = 0,01 м, длина l1 =1 м, l2 =2 плотность рабочей жидкости =900 кг/м3, кинематическая вязкость ‚ .

Решение. Вычислим число Рейнольдса для каждой ветви системы гидропередачи, учитывая, что скорость

В обеих магистралях режим течения ламинарный.

Коэффициент гидравлического трения находим по формуле (3.18):

Читать еще:  Перевод имени юрий на разных языках

Потери давления в каждой ветви определим по формуле (3.4):

Пример 348. Определить расход воды в бывшей в эксплуатации водопроводной

трубе диаметром d= 0,3 м. если скорость на оси трубы, замеренная

трубкой Пито—Прандтля, имакс=4,5 м/с, а температура воды 10°С.

Решение. Находим по табл. 3.1 значение абсолютной шероховатости для

старых стальных труб: kэ=0,5 мм.

Предполагая, что движение воды происходит в квадратичной области

турбулентного движения, определяем коэффициент гидравлического трения по

сокращенной формуле (3.10):

Среднюю скорость определяем по уравнению (3.25):

имакс/ ;

Кинематическая вязкость воды ν=1.31*10 -6 м 2 /с=0.0131см 2 /с.

Определяем значения критерия зоны турбулентности по формуле (3.8):

Таким образом, движение действительно происходит в квадратичной области сопротивления.

Расход воды в трубе находим из выражения

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Гидравлическое сопротивление труб

Гидравлическое сопротивление – это сопротивление движению потока рабочей среды, которое оказывается со стороны трубопроводной системы и оценивается количеством потерянной удельной энергии, безвозвратно расходуемой на работу сил трения. При этом гидропотери могут возникать в результате:

  • Трения по длине. Даже на прямых отрезках трубопровода создаётся противодействие движущемуся потоку. Это возникает на фоне появления сил вязкого трения. Причём с увеличением длины прямолинейного участка повышается сопротивление внутри трубопровода на данном участке.
  • Местных факторов. Это могут быть повороты, различные сужения, тройники, краны и прочее.

Расчет гидравлического сопротивления и его роль

Любая трубопроводная коммуникация имеет не только прямолинейные участки, но и повороты, ответвления, для создания которых используются различные фитинги. А для регулирования потока рабочей среды устанавливается запорная арматура. Всё это создаёт сопротивление, поэтому очень важно перед тем, как приступать к монтажу трубопровода, необходимо выполнить ряд расчётов, в том числе определить гидравлическое сопротивление. Это позволит в будущем сократить теплопотери и, соответственно, избежать лишних энергозатрат.

Гидравлический расчёт выполняется с целью:

  • Вычисления потерь давления на конкретных отрезках системы отопления;
  • Определения оптимального диаметра трубопровода с учётом рекомендованной скорости перемещения рабочего потока;
  • Расчёта тепловых потерь и величины наименьшего давления в трубопроводе;
  • Правильного выполнения увязки параллельно расположенных гидравлических ветвей и закреплённой на ней запорной арматуры.

Во время движения по замкнутому контуру рабочему потоку приходится преодолевать определённое гидравлическое сопротивление. Причём с увеличением его значения, должна увеличиваться мощность насоса. Только правильные расчёты помогут выбрать оптимальный вариант насоса. Нет смысла покупать слишком мощное оборудования для трубопроводов с низким гидравлическим сопротивлением, ведь, чем больше мощность, тем выше энергозатраты.

А если мощность будет, наоборот, недостаточной, то насосное оборудование не сможет обеспечить достаточный напор теплоносителя, что приведёт к увеличению тепловых потерь.

Коэффициент гидравлического сопротивления трубы

Это безмерная величина, показывающая, каковы потери удельной энергии.

Ламинарное перемещение рабочего потока

При ламинарном (равномерном) перемещении рабочей среды по трубопроводу круглого сечения потери давления по длине вычисляется по формуле Дарси-Вейсбаха:

— потери давления по длине;

— коэффициент гидравлического сопротивления;

v – скорость движения рабочей среды;

g – ускорение силы тяжести;

d – диаметр трубопроводной магистрали.

Практически определено, что на коэффициент гидравлического сопротивления непосредственное влияние оказывает число Рейнольдса (Re) – безмерная величина, которая характеризует поток жидкости и выражается отношением динамического давления к касательному напряжению.

Если Re меньше, чем 2300, то для расчёта применяется формула:

Для трубопроводов в форме круглого цилиндра:

Для трубопроводных коммуникаций с другим (не круглым) сечением:

Где А=57 – для квадратных труб.

Турбулентное течение рабочего потока

При турбулентном (неравномерном, беспорядочном) перемещении рабочего потока коэффициент сопротивления вычисляют опытным путём, как функцию от Re. Если необходимо определить коэффициент гидравлического сопротивления для магистрали круглого сечения с гладкими поверхностями при

, то для расчёта применяется формула Блаузиуса:

В случае турбулентного перемещения рабочей среды на величину коэффициента трения влияет число Рейнольдса (характер течения) и насколько гладкая внутренняя поверхность трубопроводной коммуникации.

Коэффициент местного сопротивления

Это безмерная величина, которая устанавливается экспериментальным путём с помощью формулы:

– коэффициент местного сопротивления;

– потеря напора;

– отношение скорости потока к ускорению силы тяжести – скоростной поток.

При неизменной скорости перемещения рабочей среды по всему сечению применяется формула:

, где

– энергия торможения.

Справочник химика 21

Химия и химическая технология

Потери давления напора в трубопроводах

При движении продукта по трубопроводу возникает сопротивление от трения его о стенки трубы и различные преграды. Это сопротивление, называемое гидравлическим сопротивлением трубопровода, тем больше, чем выше скорость потока н его плотность. Внутренний диаметр трубопровода может быть определен по заданной потере давления (напора) в трубопроводе по следующей упрощенной формуле [c.9]

Потери давления Дрп или напора hn на преодоление сопротивления трения и местных сопротивлений в трубопроводах определяются по формулам [c.9]

При расчете по указанной методике потери давления (напора) на трение, равномерно распределенные по длине трубопровода, условно заменяются сосредоточенными в узлах сопротивления , которые принимаются находящимися в некоторых точках трубопровода. [c.10]

При движении теплоносителя по трубам возникает трение на стенках труб и в толще теплоносителя. На преодоление сил трения затрачивается энергия, что выражается в падении давления (напора) теплоносителя (линейные потери давления). Кроме линейных существуют так называемые местные потери давления, кото рые возникают при движении-теплоносителя в изгибах трубопровода и в арматуре. При этом давление теряется не только вследствие трения, ио также из-за вихреобразования и удара, происходящего при изменении направления или скорости движения теплоносителя. Суммарная потеря давления в трубопроводе складывается из линейных и местных потерь. [c.115]

Коэффициенты потерь давления. Потери давления в трубопроводах или каналах можно оценить, вычислив сначала потери давления в прямом трубопроводе или канале той же длины при соответствующем значении коэффициента трения и затем добавив потери, обусловленные изгибами, клапанами, тройниками, изменениями сечения и т. д. Эти потери можно определить, умножив скоростной напор на коэффициент потерь [c.51]

Гидравлический расчет позволяет определить диаметры трубопроводов, потери давления (напора) и конечные параметры теплоносителя. Выполнение гидравлического расчета начинается с составления расчетной схемы. Трубопроводы делят на расчетные участки. В качестве расчетного принимают участок между двумя ответвлениями. Для паропроводов большой протяженности без ответвлений длина расчетного участка составляет 300—500 м. На рис. 7.1 приведена расчетная схема трубопроводов. [c.175]

Масло нагревается в трубчатой печи и подается в греющую рубашку или трубчатку теплопотребляющего аппарата, где, охлаждаясь, отдает свое тепло нагреваемому сырью. Охлажденное масло забирается циркуляционным насосом и вновь направляется 3 трубчатую печь. Рабочее давление в системе создается насосом, напор которого определяется величиной потерь давления в трубопроводе и в арматуре. Расширительный сосуд, устанавливаемый на всасе насоса, рассчитывается с учетом температурного расширения масла. Объем расширительного сосуда занижать не следует, так как объемное расширение масла весьма значительно и больше объемного расширения воды. Кроме того, следует учесть, что при разогреве системы имеет место сильное пенообразование, вызываемое удалением из масла остатка легких фракций и воды. [c.318]

В башенных системах применяют центробежные насосы, дающие полный напор (высота подъема кислоты плюс потери давления в трубопроводах) в 35 м. Различают насосы с сальниковым и бессальниковым уплотнением. [c.174]

При проектировании тепловых сетей проводятся подробные рас-че ты гидравлический, на прочность и компенсацию тепловых удлинений, С помощью гидравлического расчета определяют диаметры трубопроводов, потери давления (напора), конечные параметры теплоносителя. [c.115]

Потеря давления (напора) на преодоление трения в трубопроводе определяется по формуле [c.197]

Из полученного уравнения обычно определяют величину Ар, входящую в критерий Ей. В частности, при движении жидкости через трубопроводы и аппараты так находится потеря давления (напора). [c.81]

В случае напорной деривации с уравнительным резервуаром эпюру также откладывают вверх от статического уровня (рис. 14-20,6). При очень большой длине деривации и значительных гидравлических потерях в ней это может приводить к некоторому завышению давления в трубопроводе. В таких случаях можно рекомендовать строить эпюру удара от уровня в резервуаре, соответствующего моменту достижения максимума удара, или от начального. При отрицательном ударе эпюру строят при минимальном уровне верхнего бьефа и откладывают вниз от линии пьезометрического уровня в водоводе с учетом потерь напора в нем. В случае напорной деривации с уравнительным резервуаром эпюра отрицательного удара откладывается вниз от пьезометрической линии с учетом потерь напора в деривации и в напорном трубопроводе. Более точные результаты могут быть получены путем учета величины снижения уровня в резервуаре за время открытия турбины. [c.259]

Потери давления (напора) на трение в трубопроводах или охлаждающей системе AP p g определяют по следующей формуле [c.24]

Внутренний диаметр трубопровода при заданной потере давления (напора) в трубопроводе определяют по упрощенной формуле [c.328]

Суммарные потери давления Арп или напора на преодоление сопротивления трения и местных сопротивлений (вентилей, тройников, переходов и т. д.) в трубопроводах определяются по формулам [c.27]

Читать еще:  Как переводится имя зоя с греческого

Потерю давления (напора) в трубопроводе определяют по следующей (упрощенной) формуле [c.84]

На преодоление этих сопротивлений затрачивается энергия движущейся жидкости или газа, что выражается в потере напора (давления). В случае гидростатического давления необходимо подсчитать потери давления в трубопроводе с тем, чтобы определить оптимальный (суммарный) напор, который должен развивать насос для подачи жидкости на заданные высоту или расстояние. [c.12]

Все компрессоры нагнетают пары аммиака в общий конденсатор Кд через промывной маслоотделитель МО. На входе маслоотделителя установлен обратный клапан ЗКО подача жидкого аммиака в маслоотделитель производится через поплавковый регулятор уровня 2РУ (27) . Для этого можно использовать любой простейший регулятор. Надежная работа регулятора 2РУ обеспечивается, если маслоотделитель установлен ниже конденсатора настолько, чтобы статический напор был больше, чем потеря давления в трубопроводе от маслоотделителя к конденсатору. [c.217]

Расчет выполняется в такой последовательности подготавливается аксонометрическая схема газопровода с расположением на ней отводов, переходов, отключающей арматуры, сварных стыков, компенсаторов и с разбивкой газопровода на расчетные участки определяются для каждого участка расчетный расход газа, протяженность, число и вид местных сопротивлений, разность абсолютных отметок начала и конца рассчитываемого газрпровода рассчитывается участок, наиболее удаленный от регулятора давления газа для расчетного участка с помощью номограммы (рис. 11.10) выбираются диаметр газопровода и удельные потери давления / в зависимости от расхода газа и от принятого диаметра газопровода с помощью номограмм (рис. 11.11 или 11.12) определяется длина эквивалентного участка с местным сопротивлением, равным единице по расчетной схеме газопровода определяется сумма коэффициентов местных сопротивлений и дополнительная длина участка газопровода определяются расчетная длина газопровода I и общие гидравлические потери давления в зависимости от линейных местных сопротивлений как произведение Ш в зависимости от пространственного положения газопровода к полученному результату прибавляется или вычитывается гидростатический напор аналогично рассчитываются все участки внутренних и наружных газопроводов низкого давления и путем постепенного приближения выбираются диаметры трубопроводов, обеспечивающие номинальные параметры. [c.530]

Для запуска и достижения заданных расходов и давления насосы, перекачивающие СНГ, заливают жидкостью для создания первичного напора, равного нескольким десяткам паскалей. Весьма важно не превысить сверх допустимой нормы потери давления, неизбежные на входе, так как в результате кавитации жидкости, возникающей при испарении, может остановиться насос. В связи с этим диаметр входного патрубка не должен быть меньше диаметра всасывающего сопла. Кроме того, сетчатый фильтр допускается устанавливать от места подачи жидких СНГ в насос только на расстоянии, равном 10 диаметрам трубопровода. [c.147]

Коллекторы трубных пучков. При проектировании коллекторов для трубных пучков возникает ряд новых проблем [14]. Если отношение длины трубопровода к его диаметру достаточно велико, так что в основном потери давления происходят в трубе, это не вызывает особых проблем, в отличие от тех случаев, когда отношение длины к диаметру меньше 100 и потери давления в трубах составляют два скоростных напора или менее, а в коллекторах — от двух до шести скоростных напоров в зависимости от положения трубы. [c.130]

Перечень принятых в работе условных обозначений О,, Ог, Кг, К — внутренний и внешний диаметр и радиус трубопровода, м Ь — длина участка нефтепровода, м — скорость, м/с О — производительность перекачки, м /с Н — полные потери напора на трение на участке нефтепровода, включая учет разницы в геодезических отметках начала и конца участка и необходимую величину передаваемого давления, м Р — давление в трубопроводе, Н/м г, г — осевая и радиальная составляющие цилиндрической системы координат, м I — время, с Т — температура, °С X — коэффициент теплопроводности, Вт/ (м °С) р — плотность, кг/м с — теплоемкость, Дж/(кг °С) т] — динамическая вязкость, Н с/м или в степенной жидкости — мера консистенции, Н с»/м X — напряжение сдвига, Шм п — показатель поведения жидкости а — коэффициент потерь тепла, Вт/(м °С) — коэффициент гидравлического сопротивления А,, В , — константы в реологических зависимостях [c.150]

Характеристикой трубопровода называется график зависимости суммарной потери напора (или давления) в трубопроводе от расхода [c.140]

Если в трубопроводе АВ сырье находится в двухфазном состоянии, задача определения потери напора осложняется тем, что доля отгона является переменной величиной, так как в ре-зультате перепада давления в трубопроводе АВ происходит дополнительное испарение. Это испарение происходит в условиях, близких к адиабатическим, так как потери через теплоизоляцию трубопровода АВ невелики. Пренебрегая тепловыми потерями, напишем [c.496]

Скорость движения жидких и газообразных продуктов определяется расчетом и опытами и принимается для воды и маловязких жидких продуктов (спирт, ацетон, бензин, слабые растворы кислот и щелочей и пр.) — от 15 до 30 ж/сек для сжатого воздуха и насыщенного пара — от 20 до 40 м/сек для перегретого пара — от 30 до 60 м1сек для жидкостей с большой вязкостью (масла, суспензии и пр.) —от 0,5 до 1,5 м1сек. Гидравлическое сопротивление тем выше, чем больше скорость движения продукта. Внутренний диаметр трубопровода по заданной потере давления (напора) в трубопроводе может быть определен по упрощенной формуле [c.21]

Под простым трубопроводом понимается трубопровод без разветвлений. Характеристикой трубопровода называется зависимость потерь давления Дрг (или напора) в нем от расхода Q. В большинстве случаев характеристику трубопровода используют в графическом виде. Для получе- [c.255]

Число Эйлера Ей Ар/р)1и Др — потеря давления на трение, Потеря напора на трение удвоенный скоростной напор Трение потока в трубопроводах [c.181]

Сумм ные потери давления Дрп или напора Ьп на преодоление сопротивления трения и местных сохфотивлений (вентилей, тройников, переходов и т.д.) в трубопроводах ощжделяются по формулам [c.37]

Для составления графика распределения давления вдоль трубопровода подсчитаем потери напора от отдельных местных сопротивлений и на отдельных участках по их длине. [c.357]

Учет гидравлического сопротивления. Этим элементом условно учитываются все потери гидравлического напора за счет трения жидкости о стенки трубопровода, потери на вентилях, задвижках й т. д. Соответствующий фрагмент диаграммы связи является сочетанием 1-структуры с В-диссипативным элементом, на котором аадается нелинейное соотношение между перепадом давленйя P = Р — Рз и расходом 4 через гидравлическое сопротивление. При этом следует иметь в виду, что почти все данные но коэффициентам сопротивления относятся к установившимся потокам. Поэтому при изучении и моделировании неустановивщихся режимов гидравлических цепей не исключена коррекция этих данных по результатам эксперимента. [c.169]

В. Ребойлеры с продольным потоком. В ребойлерах этого типа поток движется либо внутри труб, либо вдоль наружной поверхности труб. Наиболее типич1п,ш является вертикальный термосифонный ребойлер с испарением в трубах. Расход теплоносителя рассчитывается из равенства статического напора и потерь давления в ребойлере и соединительном трубопроводе с применением метода последовательных приближений. При проектировании необходимо учитывать ряд соображений, приведенных ниже. [c.79]

Давление в колонне принимается таким же, как и в реакторе, за вычетом потерь в трансферном трубопроводе. Потери напора от верха колонны до ввода сырья принимаются равньнли 35 кПа, а от верхней тарелки до емкости орошения — 30 кПа. [c.134]

ПЕРЕМЕЩЕНИЕ ГАЗОВ, осуществляется под действием разности давлений на двух участках потока. Может производиться в замкнутых каналах (трубопроводы, газоходы и др.) либо без них. В последнем случае П. г. наз. вентиляцией. Необходимая разность давлений определяется требуемой скоростью газового потока и допускаемым гидравлич. сопротивлением системы, возникающим при движении газа по трубопроводу. При этом давление, идущее на преодоление гидравлич. сопротивления, теряется в результате необратимого превращения мех. энергии (работы сил сопротивления) в теплоту отношение потерянного давления к скоростному напору ро /г (Р — плотность газа, v — средняя скорость потока) в условленном сечении наз. коэф. гидравлич. сопротивления. Давление, потерянное на преодоление гидравлич. сопротивления, можно представить в виде суммы потерь давления на преодоление трения (Дрш) и местных сопротивлений (Дрпи). При этом [c.430]

Падение давления (напора) между трубопроводом и отводом (включая потери на треине), рассчитанное по скорости в главном потоке до отвода. Действительная величина зависит от схемы разделения потока и находится в пределах от 0,5 до 1,3, если главный поток направляется в отвод. [c.153]

ЛРф, АРтруб, А-Ррег, Д фл — потери давления в форсунках, трубопроводах и системе охлаждения, регулирующей системе и на фильтрах, н м . При перекачке по трубопроводам на большие расстояния давление подачи (напор) в основном определяется гидравлическими потерями в трубопроводах АРтруо, поскольку остальные составляющие уравнения относительно малы. [c.24]

Смотреть страницы где упоминается термин Потери давления напора в трубопроводах: [c.126] [c.75] [c.496] [c.4] Процессы и аппараты химической промышленности (1989) — [ c.48 ]

Ссылка на основную публикацию
Adblock
detector