3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Системы вентиляции с переменным расходом воздуха

Вентиляционные системы с переменным расходом воздуха (VAV-системы)

Представьте, что вы хотите установить в квартире систему вентиляции. Расчеты показывают, что для нагрева приточного воздуха в холодное время года потребуется калорифер мощностью 4,5 кВт (он позволит нагревать воздух от -26°С до +18°С при производительности вентиляции равной 300 м³/ч). Подача электроэнергии в квартиру производится через автомат на 32А, поэтому несложно подсчитать, что мощность калорифера составляет около 65% от общей мощности, выделенной для квартиры. Это означает, что такая система вентиляции не только существенно увеличит суммы счетов за электроэнергию, но и перегрузит электросеть. Очевидно, что устанавливать калорифер такой мощности не представляется возможным и его мощность придется уменьшить. Но как это сделать это без снижения уровня комфорта обитателей квартиры?

Как снизить потребление электроэнергии?

Система с переменным расходом воздуха или VAV (Variable Air Volume) система позволяет регулировать подачу воздуха в каждом помещении независимо друг от друга. С такой системой вы можете отключать вентиляцию в любой комнате точно так же, как привыкли выключать свет. Действительно, ведь мы не оставляем гореть свет там, где никого нет — это было бы неразумной тратой электроэнергии и денег. Зачем же позволять напрасно тратить энергию системе вентиляции с мощным калорифером? Однако традиционные системы вентиляции именно так и работают: подают нагретый воздух во все помещения, где могли бы находиться люди, независимо от того есть ли они там на самом деле. Если бы мы управляли светом точно так же, как традиционной вентиляцией — он бы горел сразу во всей квартире, даже ночью! Несмотря на очевидное преимущество VAV систем, в России, в отличие от западной Европы, они пока не получили широкого распространения, отчасти потому, что для их создания требуется сложная автоматика, которая существенно увеличивает стоимость всей системы. Однако стремительное удешевление электронных компонентов, которое происходит в последнее время, позволило разработать недорогие готовые решения для построения VAV систем. Но прежде, чем переходить к описанию примеров систем с переменным расходом воздуха, разберемся, как они работают.

Принцип работы VAV-системы

На иллюстрации показана VAV-система с максимальной производительностью 300 м³/ч, обслуживающая две зоны: гостиную и спальню. На первом рисунке подача воздуха производится в обе зоны: 200 м³/ч в гостиную и 100 м³/ч в спальню. Допустим, что зимой мощности калорифера будет недостаточно для нагрева такого потока воздуха до комфортной температуры. Если бы мы использовали обычную систему вентиляции, то нам пришлось бы снизить общую производительность, но тогда в обоих помещениях стало бы душно. Однако у нас установлена VAV-система , поэтому днем мы можем подавать воздух только в гостиную, а ночью — только в спальню (как на втором рисунке). Для этого клапаны, регулирующие объем подаваемого в помещения воздуха, оборудуются электроприводами, которые позволяют с помощью обычных выключателей открывать и закрывать заслонки клапанов. Таким образом, нажав на выключатель, пользователь перед сном отключает вентиляцию в гостиной, где ночью никого нет. В этот момент дифференциальный датчик давления, который измеряет давление воздуха на выходе приточной установки, фиксирует увеличение измеряемого параметра (при закрывании клапана сопротивление воздухопроводной сети возрастает, приводя к увеличению давления воздуха в воздуховоде). Эта информация передается в приточную установку, которая автоматически снижает производительность вентилятора ровно на столько, чтобы давление в точке измерения оставалось неизменным. Если же давление в воздуховоде остается постоянным, то и расход воздуха через клапан в спальне не изменится, и по-прежнему будет составлять 100 м³/ч. Общая производительность системы снизится и также будет равна 100 м³/ч, то есть ночью потребляемая системой вентиляции энергия уменьшится в 3 раза без ущерба для комфорта людей! Если включать подачу воздуха попеременно: днем в гостиную, а ночью в спальню, то максимальную мощность калорифера можно будет сократить на треть, а среднюю потребляемую энергию — в два раза. Самое интересное заключается в том, что стоимость такой VAV-системы превышает стоимость обычной системы вентиляции всего на 10–15%, то есть эта переплата будет быстро компенсирована за счет снижения суммы счетов за электроэнергию.

Лучше понять принцип работы VAV-системы поможет небольшая видеопрезентация:

Теперь, разобравшись с принципом работы VAV-системы , посмотрим, как можно собрать такую систему на основе имеющегося на рынке оборудования. За основу мы возьмем российские VAV-совместимые приточные установки Breezart, которые позволяют создавать VAV-системы, обслуживающие от 2 до 20 зон с централизованным управлением с пульта, по таймеру или датчику СО2.

VAV-система с 2-х позиционным управлением

Эта VAV-система собрана на базе приточной установки Breezart 550 Lux производительностью 550 м³/ч, которой достаточно для обслуживания квартиры или небольшого коттеджа (с учетом того, что система с переменным расходом воздуха может иметь меньшую производительность по сравнению с традиционной системой вентиляции). Эту модель, как и все остальные вентустановки Breezart, можно использовать для создания VAV-системы . Дополнительно нам понадобится набор VAV-DP, в который входит датчик JL201DPR, измеряющий давление в канале воздуховода возле точки разветвления.

Вентиляционная система разделена на 2 зоны, причем зоны могут состоять как из одного помещения (зона 1), так и из нескольких (зона 2). Это позволяет использовать подобные 2-х зонные системы не только в квартирах, но также в коттеджах или офисах. Управление клапанами каждой зоны производится независимо друг от друга с помощью обычных выключателей. Чаще всего такая конфигурация используется для переключения ночного (подача воздуха только в зону 1) и дневного (подача воздуха только в зону 2) режимов с возможностью подачи воздуха во все помещения, если, к примеру, к вам пришли гости.

Больше, чем сплит

Системы с регулируемой подачей воздуха, в основе которых лежит хорошо изученная и отработанная технология, с точки зрения простоты конструкции и экономии средств могут оказаться на удивление эффективными в кондиционировании небольших помещений. Помимо подавляющего превосходства в плане комфорта по сравнению со сплит-системами, данные устройства, несомненно, являются и более дешевыми.

При проектировании систем кондиционирования воздуха для помещений небольшой общей площади часто возникают проблемы, связанные со скудностью бюджета, выделенного для этой цели. Одна из основных проблем заключается в том, что в целях экономии очень часто заказчик поручает подготовку проекта не лицензированному специалисту, а непосредственно строительно-монтажной организации. Само собой разумеется, что для малобюджетных решений в подавляющем большинстве случаев предпочтение отдается немудреным, ставшим уже типовыми, проектам настенных или потолочных сплит-систем.

Однако у нас имеется возможность доказать, что даже в этих случаях, располагая скромным бюджетом, можно реализовать оригинальное технологическое решение, которое по уровню комфортности в помещениях (температуре воздуха, шумовым характеристикам и объему подаваемого свежего воздуха) находится практически на одном уровне со сложными высокотехнологичными системами.

Вызов принят

Самое, пожалуй, серьезное ограничение, имеющееся в технологии сплит-систем, это невозможность обеспечить в обслуживаемом помещении хотя бы минимальную смену воздуха. Весьма проблематично также качественное дифференцированное управление температурным режимом одновременно в нескольких помещениях.

Даже когда имеется сеть разводящих воздуховодов, проходящий по ним объем воздуха постоянен и, следовательно, полная регулировка холодильной нагрузки по различным погодным схемам все равно невозможна, из-за чего часто возникают ощущения дискомфорта (достаточно сказать о меняющейся в течение дня солнечной радиации).

Еще один значительный недостаток сплит-систем вызван тем, что очень часто неудачное размещение оборудования безнадежно портит эстетику помещения.

Из этих простых соображений родилась идея попробовать применить широко использующиеся на крупных централизованных объектах системы с регулируемой подачей воздуха в помещениях, имеющих относительно малую полезную площадь: магазины, офисы, квартиры и пр.

Естественно, использование полноценной системы-VAV (сокращенное обозначение систем с переменным расходом воздуха от англ. Variable Air Volume) требует немалых расходов и в силу этого не выдерживает сравнения с традиционными системами. Отсюда наше стремление частично «отшелушить» технологические наслоения в попытке получить простое и экономичное решение.

Введение в систему

Мы уже отмечали, что основной принцип такой системы тот же, что и у системы-VAV. В летний период, когда объект/участок требует максимального охлаждения, система получает максимально возможный объем охлажденного воздуха. С уменьшением потребности в охлаждении объемы поступающего воздуха пропорционально сокращаются. Тот же принцип действует и в зимний период, когда возникает потребность в горячем воздухе.

Объем воздуха, поступающего в каждое помещение/участок, регулируется только оконечной заслонкой на участке. Каждая оконечная заслонка подключена к датчику температуры воздуха в помещении, обеспечивающему свободный выбор температурного режима со стороны пользователей.

Такой подход позволяет пользователям в полной мере контролировать состояние среды в помещении, снимая одну из самых досадных проблем простого оборудования кондиционирования воздуха на базе сплит-систем, а именно невозможность контролировать работу на каждом отдельном обслуживаемом участке.

Обработанный воздух поступает на оконечные заслонки через сеть низкоскоростных воздуховодов, питаемых от воздухообрабатывающего узла или крышной установки. Этот простой центральный блок дает постоянный расход воздуха. При наличии одного центрального блока, который без труда монтируется в подвесном потолке, существенно сокращается объем работ по техническому обслуживанию, число источников шума.

Весь объем воздуха, не востребованный на оконечных участках, при сниженных потребностях отопления или охлаждения возвращается обратно на воздухообрабатывающий узел через байпас. Такое решение не затрагивает функциональной сути системы с постоянной пропускной мощностью, но существенно упрощает саму систему (сокращая, соответственно, затраты на отладку и регулировку) по сравнению с более совершенными установками-VAV.

Очевидно, что в отличие от установок-VAV регулировочные участковые заслонки не могут отслеживать в реальном времени пропускные объемы воздуха, однако при помощи датчика температуры на участке, взаимодействующего с центральным блоком DDC на базе микропроцессора, они, тем не менее, в состоянии привести «безличные» объемы в соответствие с потребностями пользователей.

На рис. 1 приведена простая принципиальная схема предлагаемой системы с регулируемым расходом воздуха.

Динамика системы (регулировка пропускных объемов по участкам, сбалансированность воздуховодов, потери нагрузки) с учетом постоянно меняющихся потребностей обслуживаемых участков обеспечивается блоком DDC, контролирующим динамическое (или статическое) давление на подаче и непрерывно управляющим заслонкой байпаса, установленной непосредственно за воздухообрабатывающим узлом. Таким образом реальные пропускные объемы на подаче непрерывно подгоняются под установленные потребности пользователей.

Схема системы Varitrac. Работа крышной установки, представленной на схеме, полностью контролируется посредством панели управления Varitrac. Помимо простоты соединений обращает на себя внимание возможность каскадного управления с панели всеми регулирующими заслонками.

Максимальное число управляемых заслонок в данной системе 16

Дифференциальный преобразователь давления, работающий по сигналу датчика скорости, установленного сразу на выходе из устройства, также подключен к центральной панели управления. Панель служит для контроля пропускных объемов воздуха в системе. Управлять положением заслонки байпаса можно также непосредственно с центральной панели.

Такое решение позволяет без особых технологических сложностей, применяя современную управляющую

аппаратуру, получить в результате гибкую и эффективную систему, вполне отвечающую запросам пользователей.

Подготовка проекта

Система была реализована в новом административном комплексе компании Termoidraulica Puppi в г. Турате (Италия) (рис. 2).

Читать еще:  Рождественская викторина для дружной компании

Площадь помещений составляет 90 м 2 , вся зона поделена на четыре участка: служба приема посетителей, торговый отдел, технический отдел и демонстрационный зал.

Принципиальная схема установки. Излишки пропускных объемов воздуха отводятся через байпас. Таким образом, независимо от значений потребности, установленных пользователями каждого участка, в контуре распределения воздуха поддерживается непрерывное равновесие

По этому же принципу были обозначены участки кондиционирования воздуха. На каждом из них установлены термостаты температуры воздуха в помещении, подключенные к соответствующей регулирующей заслонке.

Общая максимальная тепловая нагрузка в помещении в летний период (июль, время 15.00) всех четырех участков (табл. 1) оценивается в 6,6 кВт (с учетом 20%-го коэффициента безопасности), следовательно, расчетный максимальный предусмотренный пропускной объем воздуха составляет 1 400–1 500 м 3 /ч, из которых примерно 15% забирается непосредственно снаружи. Расчетная мощность холодильного агрегата составила 7,8 кВт.

Системы вентиляции с переменным расходом воздуха

Системы с переменным расходом воздуха (VAV – Variable Air Volume) — это энергоэффективная система вентиляции, позволяющая экономить энергию без снижения уровня комфорта. Система дает возможность независимого, для каждого отдельного помещения, регулирования параметров вентиляции, а также позволяет экономить капитальные и эксплуатационные затраты.

Современная база оборудования и автоматики позволяет создавать такие системы по ценам, почти не превышающих цены обычных систем вентиляции, при этом позволяя эффективно расходовать ресурсы. Все это и есть причины возрастающей популярности VAV-система.

Рассмотрим, что такое VAV-система, как она работает, какие преимущества дает, на примере вентиляционной системы коттеджа, площадью 250 кв.м. (перейти к выбору оборудования в каталоге).

Преимущества систем с переменным расходом воздуха

Системы с переменным расходом воздуха (VAV – Variable Air Volume), уже в течение нескольких десятилетий широко используются в Америке и Западной Европе, на Российский рынок они пришли совсем недавно. Пользователи западных стран высоко оценили преимущество независимого, для каждого отдельного помещения, регулирования параметров вентиляции, а также возможность экономии капитальных и эксплуатационных затрат.

Вентиляционные “Variable Air Volume“ системы работают в режиме изменения количества подаваемого воздуха. Изменения тепловой нагрузки помещений компенсируются путем изменения объемов приточного и вытяжного воздуха при его постоянной температуре, поступающего из центральной приточной установки.

Вентиляционная система VAV реагирует на изменение тепловой нагрузки отдельных помещений или зон здания и изменяет фактическое количество воздуха, подаваемого в помещение или зону.

За счет этого вентиляция работает при общем значении расхода воздуха меньшем, чем необходимо при суммарной максимальной тепловой нагрузке всех отдельных помещений.

Это обеспечивает снижение потребления энергии при сохранении заданного качества воздуха внутри помещений. Снижение энергетических затрат может составлять от 25-50% в сравнении с вентиляционными системами с постоянным расходом воздуха.

Рассмотрим эффективность на примере вентиляции загородного дома
площадью 250 м², с тремя спальнями

При традиционной системе вентиляции, для жилого помещения такой площади, требуется расход воздуха около 1000 м³/ч., и зимой для нагрева приточного воздуха до комфортной температуры потребуется около 15 кВтч. При этом заметная часть энергии будет тратиться впустую, ведь люди, для которых работает вентиляция, не могут находиться сразу во всем коттедже: ночь они проводят в спальнях, а день — в других комнатах. Однако выборочно уменьшить производительность традиционной системы вентиляции в нескольких помещениях невозможно, поскольку балансировка воздушных клапанов, с помощью которых можно регулировать подачу воздуха по помещениям, производится на этапе пуско-наладки, а в процессе эксплуатации соотношение расходов изменять нельзя. Пользователь может только уменьшить общий расход воздуха, но тогда в помещениях, где находятся люди, станет душно.

Если к воздушным клапанам подключить электроприводы, которые позволят дистанционно управлять положением заслонки клапана и тем самым регулировать расход воздуха через него, то можно будет включать и отключать вентиляцию раздельно в каждом помещении с помощью обычных выключателей. Проблема в том, что управлять такой системой весьма сложно, т.к. одновременно с закрытием части клапанов придется снижать производительность системы вентиляции на строго определенную величину, чтобы расход воздуха в остальных помещениях оставался неизменным и в результате улучшение превратится в головную боль.

Использовании VAV-системы позволит проводить все эти регулировки в автоматическом режиме. И так устанавливаем простейшую VAV-систему, которая позволяет раздельно включать и отключать подачу воздуха в спальни и остальные помещения. В ночном режиме, воздух подается только в спальни, следовательно расход воздуха составлять около 375 м³/ч (из расчета по 125 м³/ч на каждую спальню, пл. 20 м²), и потребление энергии около 5 кВтч, то есть, в 3 раза меньше, чем в первом варианте.

Получив возможность раздельного управления, в разных помещениях можно дополнить систему средствами новейшей автоматизации климатконтроля, так применение клапанов с пропорциональными электроприводами сделает управление плавным и еще более удобным; а если подключить включение/оключение подачи воздуха по сигналу датчика присутствия, мы получаем аналог системы «Умный глаз», используемой в бытовых сплит-системах, но на совершенно новом уровне. Для дальнейшей атоматизации в систему можно встраивать датчики температуры, влажности, концентрации CO2 и др, что в итоге — не только позволит беречь энергию, но и при этом значительно повысит уровень комфорта.

Если все блоки автоматики, которые управляют электроприводами воздушных клапанов, соединить единой шиной управления, то появится возможность централизованного сценарного управления всей системой. Так, можно создать и задавать индивидуальные режимы работы для разных помещений, в разных жизненных ситуациях, так:

ночью — воздух подается только в спальни, а в остальных помещениях клапаны открыты на минимальном уровне; днем — воздух подается в комнаты, кухни, и др помещения, кроме спален. В спальных комнатах клапаны закрыты или открыты на минимальном уровне.

вся семья в сборе — расход воздуха в гостиной увеличиваем; в доме никого — настраивается циклическое проветривание, которое не позволит возникнуть запахам и сырости, но сэкономит ресурсы.

Для независимого управления не только объемом, но и температурой приточного воздуха в каждом из помещений можно установить догреватели (маломощные калориферы), управляемые от индивидуальных регуляторов мощности. Это позволит подавать из вентустановки воздух с минимально допустимой температурой (+18°С), индивидуально нагревая его до требуемого уровня в каждом помещении. Такое техническое решение позволит еще больше снизить потребление энергии, и приблизит нас к системе «Умный дом».

Схема работы такой системы, скорее вопрос профильного специалиста, поэтому здесь мы приведем всего одну, самую простую схему (рабочий и ошибочный варианты) с объяснением как это работает. Но кроме простых систем, сущестуют и более сложные варианты позволяющие создавать любые VAV-системы — от бытовых бюджетных систем с двумя клапанами до многофункциональных вентиляционных систем административных зданий с поэтажным управлением расходом воздуха.

Звоните, специалисты компании «ОВК Инжиниринг» проконсультируют, помогут выбрать оптимальный вариант, спроектируют и установят VAV-систему, идеально подходящую именно Вам.

Почему VAV-системы должны устанавливать специалисты

Проще всего ответить на это вопрос, на примере. Рассмотрим типовую конфигурацию системы с переменным расходом воздуха и ошибки, которые могут быть допущены при ее проектировании. На иллюстрации показан пример корректной конфигурации воздухопроводной сети VAV-системы:

Первой идет ПУ-VAV, далее расположен фильтр тонкой очистки => воздуховоды разной длинны разводят воздух от точки разветвления до VAV-клапанов.

В верхней части расположен управляемый клапан, который обслуживает три помещения (три спальни из нашего примера) => В этих помещениях установлены дроссель-клапаны с ручным управлением для балансировки на этапе пуско-наладки. Сопротивление этих клапанов не будет изменяться* в процессе работы, поэтому не оказывают влияния на точность поддержания расхода воздуха.

К магистральному воздуховоду подключен клапан с ручным управлением, который имеет неизменный расход воздуха P=const. Такой клапан может понадобиться для обеспечения нормальной работы вентустановки в случае, когда все остальные клапаны закрыты. => Воздуховод с этим клапаном выводится в помещение с постоянной подачей воздуха.

Схема простая, рабочая и эффективная.

Теперь рассмотрим ошибки, которые могут быть допущены при проектировании воздухопроводной сети VAV-системы:

Ошибочные ответвления воздуховодов выделены красным цветом. Клапаны №2 и 3 подключены к воздуховоду, идущему от точки разветвления к VAV-клапану №1. При изменении положения заслонки клапана №1 давление в воздуховоде возле клапанов №2 и 3 будет изменяться, поэтому расход воздуха через них не будет постоянным. Управляемый клапан №4 нельзя подключать к магистральному воздуховоду, поскольку изменение расхода воздуха через него приведет к тому, что давление P2 (в точке разветвления) не будет постоянным. А клапан №5 нельзя подключать так, как показано на схеме, по той же причине, что и клапаны №2 и 3.

*Конечно можно настроить управляемый воздушный поток для каждой спальни, но в этом случае будет более сложная схема, которую в рамках данной статьи мы не рассматриваем.

Наши специалисты готовы приступить к работе немедленно

Все интересующие вас детали вы можете узнать, позвонив по телефону: +7 (495) 744-61-96
или в нашем офисе: Москва, ул. 1-я Останкинская, дом 41А, офис 510
Гарантируем высокий уровень качества и доступные цены.

Автоматизация вентиляции с переменным расходом воздуха (VAV)

Задача

Система с переменным расходом воздуха (VAV) для нового энергоэффективного офисного здания должна обеспечивать управление отоплением, вентиляцией и кондиционированием воздуха (HVAC).

Для каждого офисного помещения предусматривается функционал:

  • Вентиляция с контролируемой подачей воздуха, на основании показаний датчиков CO2 и присутствия
  • Настройка температуры в помещениях с регулируемой компенсацией
  • Настройка температуры с помощью настенных сенсорных панелей
  • Управление с мобильных устройств
  • Для оптимизации управления система VAV должна взаимодействовать с существующей центральной приточной вентиляционной установкой (AHU)
  • Система VAV должна настраиваться с рабочей станции оператора, а мобильные устройства должны использоваться для дополнительного конфигурирования и настройки системы вентиляции.

Решение

Решение данной задачи строится на нескольких продуктах LOYTEC:

  • VAV-контроллер LIOB-AIR1
  • Система визуализации LWEB-900 (сервер)
  • Сетевые термостаты L-STAT
  • Сенсорные панели L-VIS

VAV-контроллеры LIOB-AIR1 устанавливаются исходя из количества вентилируемых помещений. Каждый контроллер LIOB-AIR1 измеряет интенсивность воздушного потока с помощью встроенного датчика дифференциального давления, благодаря чему настраивается демпфер вентиляционной заслонки.

Контроллер оснащен физическими входами для подключения датчиков температуры. TRIAC-входы контроллера управляют клапанами горячего водоснабжения и зональных подогревателей. Релейные выходы контроллера используются для управления переменным нагнетанием воздуха.

Физические входы-выходы VAV-контроллера LIOB-AIR1 дополняются дистанционным оборудованием с сенсорным управлением – Сетевыми термостатами L-STAT на базе протокола Modbus.

Термостат L-STAT измеряет температуру воздуха, относительную влажность и концентрацию CO2 в контролируемом помещении. Пользователь помещения может задать для себя комфортную температуру и настроить скорость вращения вентилятора. Сигналом началу работы системы служит зафиксированное движение встроенным в L-STAT датчиком присутствия.

Конференц-залы, а также зоны общего пользования оснащены сенсорными панелями LVIS-3ME7. Их бескаркасные стеклянные рамки удачно сочетаются с любым интерьером. Графические страницы интерфейса панелей L-VIS возможно разработать с учетом пожеланий компании-заказчика или фирменного стиля здания.

Визуализация VAV-системы была создана в приложении L-STUDIO, которая позволяет одновременно проектировать логическую и графическую часть системы. Библиотека VAV предоставляет шаблоны для создания типов VAV, необходимых для проекта.

Читать еще:  Доступный спорт в домашних условиях для мужчин

Связи между блоками VAV-системы и центральной приточной установкой (AHU) автоматически создаются в L-STUDIO, что и не требуют каких-либо дополнительных программных инструментов.

Графические символы VAV-библиотеки позволяют интегратору в короткие сроки разрабатывать проекты визуализации, запрошенные заказчиком.

Система визуализации LWEB-900 была развернута в качестве основной рабочей станции. Система поддерживает весь необходимый функционал, начиная от создания проекта через параметризацию до обслуживания.

Иерархия системы LIOB-AIR

Система LIOB-AIR представляет собой здание с N- этажами. Этажи в свою очередь состоят из одной или нескольких областей.

Для больших объектов можно настроить кампус с несколькими зданиями. Области, этажи и здания управляются Менеджерами.

Менеджер является программным компонентом, который может использоваться на любом VAV-контроллере LIOB-AIRx.

Менеджер области объединяет данные, такие как содержание СО2, необходимая скорость потока воздуха, необходимый объем свежего воздуха и т.д. от всех контроллеров LIOB-AIR в своей области и сообщает сгруппированное значение Менеджеру этажа.

Менеджер этажа объединяет полученные значения и сообщает их Менеджеру здания.

Менеджер здания связывается с центральной приточной установкой (AHU) и предоставляет все необходимые данные для энергоэффективной работы системы вентиляции.

Все коммуникационные связи между VAV-контроллерами LIOB-AIR генерируются автоматически и адаптируются к изменению параметров системы.

Преимущества

Применение Контроллеров LIOB-AIR позволяет подключать датчики и исполнительные механизмы напрямую к контроллеру. Интегратор может выбирать между доступными типами исполнительных механизмов, такими как плавающие или модулирующие демпферные заслонки или различные приводы.

Параметризация VAV-системы может выполняться на мобильном устройстве или на рабочей станции Системой визуализации LWEB-900. Приложение LWEB-802 поддерживает различные уровни доступа для службы эксплуатации объекта. Задачи по конфигурированию системы, такие как калибровка и настройка демпферной системы заслонок, также могут выполняться непосредственно в приложении LWEB-802.

Контроллеры LIOB-AIR в VAV-системе обмениваются информацией по подаче и потреблению воздуха с помощью центральной приточной установки (AHU). Система способна автоматически резюмировать требования к воздуху в зоне подачи и сообщать об изменениях в потреблении воздуха в центральном агрегате.

Каждый Контроллер LIOB-AIR поддерживает функционал тревог, расписаний и построения графиков, которые могут использоваться автономно или совместно с Системой визуализации LWEB-900.

Особенности

Функционал Контроллера LIOB-AIR1 предоставляет следующие возможности:

  • Регулирование объема подачи воздуха
  • Работа вентиляции, основанная на показаниях датчиков (CO2, VOC, датчик присутствия)
  • Контроль температуры приточного воздуха
  • Контроль температуры подготовленного воздуха
  • Возможность ручного управления
  • Поддержка последовательных и параллельных вентиляторов
  • Поддержка электрических подогревателей для горячей воды
  • Поддержка сетевых термостатов L-STAT
  • Встроенное приложение LWEB-802 для мобильного доступа
  • Автоматическая связь между контроллерами AHU и VAV
  • Группировка приточных и вытяжных установок в сложных системах вентиляции
  • Централизованные функции переопределения для операций балансировки и обслуживания
  • Полная интеграция с системой L-ROC для управления жалюзи и отоплением
  • Интеграция в сети BACnet и CEA-709

Типичные области применения:

Решение LOYTEC LIOB-AIR можно использовать как для отдельно стоящих зданий, так и для больших офисных зданий.

Контроллеры LIOB-AIR поддерживают все типы физических входных сигналов и коммуникационных протоколов, что позволяет взаимодействовать с остальной инженерной инфраструктурой здания.

Другие бренды:

194100 Кантемировская, д. 37, литер А, офис 3Ж Санкт-Петербург

Автоматизация инженерных систем и технологических процессов. Датчики, контроллеры, SCADA, системы связи.

VAV система вентиляции

VAV вентиляция — это энергоэффективная система с автоматической поддержанием постоянного давления в воздушном канале.

Основные назначения данной системы: снижение эксплуатационных расходов и компенсация загрязнения фильтров.

По дифференциальному датчику давления, который установлен на плате контроллера, автоматика распознает давление в канале и автоматически выравнивает его путем увеличения или уменьшения оборотов вентилятора. Приточный и вытяжной вентиляторы при этом работают синхронно.

Компенсация загрязнения фильтров

При эксплуатации системы вентиляции фильтры неизбежно загрязняются, увеличивается сопротивление вентиляционной сети и уменьшается объем подаваемого в помещения воздуха. VAV-система позволит поддерживать постоянный расход воздуха на протяжении всего срока эксплуатации фильтров.

  • VAV-система наиболее актуальна в системах с высоким уровнем очистки воздуха, где загрязнение фильтров приводит к ощутимому снижению объема подаваемого воздуха.

Снижение эксплуатационных расходов

VAV-система позволяет существенно сократить эксплуатационные расходы, особенно это заметно на приточных системах вентиляции, у которых высокое энергопотребление. Добиваются экономии путем полного или частичного отключения вентиляции отдельных помещений.

  • Пример: можно отключать гостиную ночью.

При расчете системы вентиляции руководствуются различными нормами расхода воздуха на человека.

Обычно в квартире или доме все помещения вентилируются одновременно, расход воздуха на каждое из помещений рассчитывается исходя из площади и назначения.
А что делать, если в данный момент в помещении никого нет?
Можно установить клапана и закрывать их, но тогда весь объем воздуха распределится по оставшимся помещениям, но это приведёт к увеличению шума, и бесполезному расходованию воздуха, на прогрев которого были потрачены заветные киловатты.
Можно уменьшить мощность вентиляционной установки, но это так же уменьшит объем подаваемого воздуха во все помещения, и там где присутствуют пользователи воздуха будет «не хватать».
Лучшее решение, это подавать воздух только в те помещения, где есть пользователи. А мощность вентиляционной установки должна регулироваться сама, под требуемый расход воздуха.
Именно это и позволяет осуществить VAV-система вентиляции.

VAV-системы окупаются довольно быстро, особенно на приточных установках, но главное, позволяют существенно снизить эксплуатационные расходы.

  • Пример: Квартира 100м2 с VAV-системой и без.

Регулируют объем подаваемого в помещение воздуха электрическими клапанами.

Важным условием постройки VAV-системы является организация минимального подаваемого объема воздуха. Причина такого условия кроется в отсутствии возможности управлять расходом воздуха ниже определённого минимального уровня.

Решается это тремя способами:

  1. в отдельно взятом помещении организуется вентиляция без возможности регулирования и с объемом воздухообмена равным или большим, чем требуемый минимальный расход воздуха в VAV-системе.
  2. во все помещения при выключенных или закрытых клапанах подается минимальное количество воздуха. Суммарно это количество должно быть равным или большим, чем требуемый минимальный расход воздуха в VAV-системе.
  3. Совместно первый и второй вариант.

Управление от бытового выключателя:

Для этого потребуется бытовой выключатель и клапан с возвратной пружиной. Включение будет приводить к полному открытию клапана, и вентиляция помещения будет производиться в полном объеме. При выключении возвратная пружина закрывает клапан.

Выключатель/включатель заслонки.

  • Оборудование: На каждое обслуживаемое помещение потребуется один клапан и один выключатель.
  • Эксплуатация: При необходимости пользователь включает и выключает вентиляцию помещения бытовым выключателем.
  • Плюсы: Самый простой и бюджетный вариант VAV-системы. Бытовые выключатели всегда подходят по дизайну.
  • Минусы: Участие пользователя в регулировании. Низкая эффективность из-за on-off регулирования.
  • Совет: Выключатель рекомендуется устанавливать при входе в обслуживаемое помещение, на отметке +900мм, рядом или в блоке выключателей света.

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно, помещение №2 можно включать и отключать.

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. Все помещение можно включать и отключать.

Управление от кругового регулятора:

Для этого потребуется круговой регулятор и пропорциональный клапан. Данный клапан может открываться, регулируя объем подаваемого воздуха в пределах от 0 до 100%, необходимая степень открытия задается регулятором.

Круговой регулятор 0-10В

  • Оборудование: на каждое обслуживаемое помещение потребуется один клапан с управлением 0…10В и один регулятор 0…10В.
  • Эксплуатация: При необходимости пользователь выбирает необходимый уровень вентиляции помещения на регуляторе.
  • Плюсы: Более точное регулирование количество подаваемого воздуха.
  • Минусы: Участие пользователя в регулировании. Внешний вид регуляторов не всегда подходит по дизайну.
  • Совет: Регулятор рекомендуется устанавливать при входе в обслуживаемое помещение, на отметке +1500мм, над блоком выключателей света.

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно, помещение №2 можно включать и отключать. В помещении №2 можно плавно регулировать объем подаваемого воздуха.

Малое открытие (клапан открыт на 25%) Среднее открытие (клапан открыт на 65%)

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. Все помещение можно включать и отключать. В каждом помещении можно плавно регулировать объем подаваемого воздуха.

Управление по датчику присутствия:

Для этого потребуется датчик присутствия и клапан с возвратной пружиной. При регистрации в помещении пользователя датчик присутствия открывает клапан и вентиляция помещения производиться в полном объеме. При отсутствии пользователей возвратная пружина закрывает клапан.

Датчик движения

  • Оборудование: на каждое обслуживаемое помещение потребуется один клапан и один датчик присутствия.
  • Эксплуатация: Пользователь входит в помещение — начинается вентиляция помещения.
  • Плюсы: Пользователь не участвует в регулировании зон вентиляции. Невозможно забыть включить или выключить вентиляцию помещения. Множество вариантов датчика присутствия.
  • Минусы: Низкая эффективность из-за on-off регулирования. Внешний вид датчиков присутствия не всегда подходит по дизайну.
  • Совет: Применяйте качественные датчики присутствия c встроенным реле времени, для корректной работы VAV- системы.

Минимальный требуемый объем воздуха всегда подается в помещение №1, отключить его невозможно. При регистрации пользователя начинается вентиляция помещения №2

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. При регистрации пользователя в любом из помещений начинается вентиляция данного помещения.

Управление по датчику CO2:

Для этого потребуется датчик CO2 с сигналом 0…10В и пропорциональный клапан с управлением 0…10В.
При регистрации превышения в помещении уровня CO2 датчик начинает открывать клапан в соответствии с регистрируемым уровнем CO2 .
При понижении уровня CO2 датчик начинает закрывать клапан, при этом клапан может закрыться, как полностью, так и до положения, при котором будет поддерживаться необходимый минимальный расход.

Настенный или канальный датчик СО2

  • Пример: на каждое обслуживаемое помещение потребуется один пропорциональный клапан с управлением 0…10В и один датчик CO2 с сигналом 0…10В.
  • Эксплуатация: Пользователь входит в помещение, и если уровень CO2 будет превышен — начинается вентиляция помещения.
  • Плюсы: Самый энергоэффективный вариант. Пользователь не участвует в регулировании зон вентиляции. Невозможно забыть включить или выключить вентиляцию помещения. Система начинает вентиляцию помещения только когда это действительно нужно. Система максимально точно регулирует подаваемый в помещение объем воздуха.
  • Минусы: Внешний вид датчиков CO2 не всегда подходит по дизайну.
  • Совет: Применять качественные датчики CO2, для корректной работы. Канальный датчик CO2 возможно применять в приточно-вытяжных системах вентиляции, если в обслуживаемом помещении присутствуют и приток и вытяжка.

Основная причина, по которой требуется вентиляция помещения, это превышение уровня CО2.

В процессе жизнедеятельности человек выдыхает значительное количество воздуха с высоким уровнем CO2 и находясь в непроветриваемом помещении уровень CO2 в воздухе неизбежно растет, это и является определяющим, когда говорят что стало «мало воздуха».
Лучше всего воздух подавать в помещение именно при превышении уровня CO2 выше значения 600-800 ppm.
Ориентируясь на данный параметр качества воздуха можно создать самую энергоэффективную систему вентиляции.

Минимальный требуемый объем воздуха распределяется на все помещения, так как клапана закрыты не полностью, и через них проходит минимальное количество воздуха. При регистрации повышения содержания CO2 в любом из помещений начинается вентиляция данного помещения. Степень открытия и объем подаваемого воздуха зависит от уровня превышения содержания CO2.

Читать еще:  Комнатная роза уход и выращивание

Управление системой «Умный дом»:

Для этого потребуется система «Умный дом» и любой вид клапанов. К системе «Умный дом» могут быть подключены любые типы датчиков.
Управление воздухораспределением может быть как через датчики с помощью программы управления, так и пользователем с центрального пульта управления или приложения с телефона.

Панель умного дома

  • Пример: Система работает по датчику СO2, периодически проветривает помещения, даже в отсутствии пользователей. Пользователь может принудительно включить вентиляцию в любом помещении, а так же задать количество подаваемого воздуха.
  • Эксплуатация: Поддерживаются любые варианты управления.
  • Плюсы: Самый энергоэффективный вариант. Возможность точного программирования недельного таймера.
  • Минусы: Цена.
  • Совет: Монтировать и настраивать квалифицированными специалистами.

Системы вентиляции с переменным расходом воздуха

Регулирование систем вентиляции с переменным расходом воздуха (VAV) базируется на трех главных принципах:
— Обеспечение требуемого воздухообмена во всех помещениях здания во всем диапазоне нагрузок. В основе этого требования лежат субъективные ощущения комфорта людей и стандарты качества внутреннего воздуха, например, стандарт [1] или другие аналогичные документы.
— Сокращение расхода энергии. Необходимо, чтобы регулирование системы обеспечивало минимальные энергозатраты, величина которых связана прежде всего с расходом кондиционируемого наружного воздуха. Важно, чтобы расход наружного воздуха не превышал необходимой нормы.
— Доступность и надежность технических средств и программного обеспечения, необходимая конфигурация схемы системы вентиляции. Система регулирования должна безотказно работать длительное время, быть удобна в эксплуатации.

Обеспечение требуемого воздухообмена
Расход приточного воздуха для систем с переменным расходом воздуха определяется в зависимости от текущей тепловой нагрузки помещения. Следует иметь в виду, что в проект обычно закладывается постоянное максимальное значение воздухообмена, без учета изменения тепловой нагрузки. Проблема состоит в том, чтобы обеспечить необходимый воздухообмен во всем диапазоне нагрузок без перерасхода энергии. Таким образом, именно принципы регулирования системы вентиляции оказывают существенное влияние как на воздухообмен, так и на энергопотребление. Здесь приводится анализ производительности воздухораспределения системы-VAV при различных способах регулирования для конкретного примера переменной тепловой нагрузки. В результате анализа определяется оптимальный принцип регулирования, надежно обеспечивающий требуемый (но не максимальный) воздухообмен.

Рассмотрим простую систему вентиляции с переменным расходом воздухом (рис. 1). Каждый воздухораспределитель-VAV подобран из условий подачи максимального расхода приточного воздуха, 472 л/с, что соответствует проектной тепловой нагрузке. Нормы расхода наружного воздуха для каждого помещения определяются в соответствии с его размером, типом и назначением и составляют по 94 л/с для двух помещений и 142 л/с для третьего. Суммарный расход наружного воздуха — 330 л/с составляет 23% от расхода приточного воздуха 1 416 л/с. Для обеспечения потребности помещения с максимальной нагрузкой необходимая доля наружного воздуха составляет30%.
Доля наружного воздуха в приточном одинакова для всех помещений — это означает, что два первых помещения получают больше наружного воздуха, чем необходимо. Избыточное количество наружного воздуха попадает в рециркуляционный поток. В данном случае 23% — усредненное (нескорректированное) соотношение наружного и приточного воздуха.
Стандарт [1] содержит нормативный метод расчета вентиляции нескольких помещений, обслуживаемых общей системой с переменным расходом. В стандарте учитываются типы помещений и эффективность распределения воздуха между помещениями, приводится формула для расчета потребности в наружном воздухе для каждого конкретного режима:

Y=X/[1+X-Z], (1)
где:
Z — доля наружного воздуха в приточном воздухе для «критической» зоны, т. е. зоны с наибольшей потребностью в вентиляции (иногда эту величину называют Z-фактор);
X — усредненное значение наружного воздуха в приточном, т. е. сумма минимально необходимого расхода наружного воздуха для всех помещений, отнесенная к общему воздухообмену;
Y — расчетная доля наружного воздуха в общем воздухообмене. Эта величина меньше Z, т. к. подразумевается использование «избыточного» количества наружного воздуха, содержащееся в рециркуляционном воздухе из помещений с меньшей потребностью в вентиляции.

Покажем, как использовать формулу (1) для’системы на рис. 1.
Рассчитаем расход наружного воздуха для каждого помещения, при этом максимальное значение принимается как критическое (Z-фактор).
Для рассматриваемого примера:
г=142/472л/с=0,3;
Х=(94+94+142)/141б л/с=330/ 141бл/с=0,23.
Тогда Y=X/[1+X-Z] = 0,23/[1+0,23-0,3]=0,23/0,93=0,25.
Это означает, что для рассматриваемого режима 25% приточного воздуха (ПВ) составляет наружный воздух (НВ). Далее определяем, что 25% от 1 416 л/с составляет 354 л/с наружного воздуха -это необходимый объем наружного воздуха для вентиляции помещений в расчетном режиме.
Пример расчета системы на различную нагрузку, приведенный в табл. 1 и 2, послужит основой для нашей оценки различных принципов регулирования вентиляции с позиции энергосбережения.
С левой стороны приведены значения тепловых нагрузок — максимальная (расчетная) и два варианта частичной. Доля наружного воздуха в приточном определена для каждого помещения как частное от деления величины расхода наружного воздуха на величину расхода приточного воздуха. Наконец, используя понятие «критической» зоны, по формуле (1) определены значения содержания наружного воздуха в системе согласно [1] для всех
уровней тепловой нагрузки:

  • 25% (354 л/с) при расчетной нагрузке;
  • 34% (340 л/с) при частичной нагрузке 1 уровня;
  • 67% (440 л/с) при частичной нагрузке
    2 уровня.

Обеспечение минимума наружного воздуха
Сравним требования к подаче наружного воздуха согласно стандарту [1] с широко распространенной схемой регулирования по принципу фиксации клапанов воздухозаборных устройств на минимальную долю наружного воздуха (табл. 1). В данном случае суммарная потребность наружного воздуха в системе в расчетном режиме составляет 330 л/с, или 23%. Однако эта величина меньше минимального значения, определенного стандартом. По мере снижения тепловой нагрузки помещения доля наружного воздуха в приточном воздухе при этом способе регулирования еще сильнее отличается от требований стандарта.
Такой способ контроля подачи наружного воздуха в системе не отвечает приведенному стандарту и поэтому неприемлем для любых систем вентиляции, обслуживающих несколько помещений, в том числе и для систем-VAV. Здесь он приводится как пример неудачного решения.

Фиксация клапанов на максимальную долю наружного воздуха
Возможен вариант такой фиксации клапанов воздухозаборных устройств, которая обеспечит требования стандарта. Это достигается путем фиксации воздухозаборных клапанов в положении, соответствующем максимально возможному содержанию наружного воздуха. В рассматриваемом примере 67% наружного воздуха соответствует частичной тепловой нагрузке 2 уровня. Такое содержание наружного воздуха в приточном во всех случаях удовлетворяет требованиям стандарта, обеспечивая вентиляцию всех зон при любых нагрузках. Однако, как показано в табл. 1, при прочих уровнях тепловой нагрузки подача наружного воздуха является избыточной, что приводит к перерасходу энергии и соответствующих эксплуатационных затрат.

Максимум наружного воздуха при регулировании воздухозабора
Приведенный выше результат может быть улучшен путем введения возможности измерения расхода наружного воздуха. Максимум наружного воздуха при регулировании воздухозабора означает такой принцип регулирования, который не сводится к простой фиксации клапанов. Расходомерное устройство контролирует объем наружного воздуха (440 л/с) для данного примера. Когда общий воздухообмен в системе изменяется, независимый от давления контур регулирования воздействует на клапан таким образом, чтобы расход наружного воздуха оставался равным 440 л/с. Это позволяет обеспечивать требования данного стандарта по наружному воздуху для всех вариантов нагрузок, при этом избыточная вентиляция уменьшается по сравнению с предыдущим случаем.
Хотя такой принцип регулирования значительно уменьшает поступление в систему наружного воздуха, в определенные периоды (в данном примере это расчетный и частичная нагрузка 1 уровня) подача наружного воздуха все же превышает необходимую: например, 440 л/с вместо 354 л/с в расчетном режиме. Отсюда следует, что потенциальная возможность улучшения системы регулирования состоит в динамическом контроле и изменении объема приточного воздуха, исходя из текущих (а не наихудших) условий.

Принцип контроля и настройки расхода наружного воздуха
Использование возможностей цифровой системы прямого регулирования (системы-DDC) позволяет обеспечить требования стандарта [1] путем динамического подбора расхода наружного воздуха на основе текущих требований для каждой зоны. Первым шагом является определение для каждого воздухораспределителя системы-VAV содержания наружного воздуха путем деления санитарной нормы для данной зоны на общий расход воздуха в системе. Контроллер приточной камеры определяет общий расход воздуха и «критическое» помещение по данным всех воздухораспределителей системы-VAV. Используя «критическое» значение доли наружного воздуха, контроллер может определить соответствующее количество наружного воздуха для всей системы и отрегулировать наружный воздухозабор.
Такой способ, называемый «подбор расхода наружного воздуха» или «настройка воздухозабора», обеспечивает наиболее точное регулирование системы вентиляции. При использовании настройки воздухозабора в здание поступает только требуемое для данного теплового режима количество наружного воздуха.
Обратимся к табл. 1 для оценки этого принципа регулирования. Крайний правый столбец содержит данные для этого варианта. Сравним их с данными первого столбца, содержащего нормативные требования. Как видим, при динамическом расчете вентиляции в каждое помещение поступает именно требуемое количество наружного воздуха, без избытков. Таким образом, мы получили систему-VAV, обеспечивающую нормативные требования к вентиляции без излишних затрат.

Результаты сравнения
Принципы регулирования систем вентиляции оценивались с позиции обеспечения нормативных требований и минимума затрат. Показано соответствие этим критериям системы регулирования с настройкой воздухозабора. Однако проектировщик должен принимать во внимание также размеры воздухораспределителей системы-VAV, наличие технических (компьютерных) средств и программного обеспечения, необходимого для реализации этого способа, а также надежность и эксплуатационные возможности системы регулирования.
Оборудование и программное обеспечение, входящее в типовую систему DDC/VAV, обеспечивают сбор данных, необходимых для настройки воздухозабора.
Воздухораспределители системы-VAV и контроллеры приточной камеры выполняют мониторинг и/или контроль параметров, необходимых для расчетов по формуле (1). АСУ здания использует эту информацию для расчета расхода наружного воздуха в режиме реального времени.
Один компонент обычно не входит в комплектацию системы-DDC/VAV: это средства для измерения и контроля расхода наружного воздуха, поступающего в систему. При отсутствии таких средств система лишь регулирует положение клапанов воздухозаборных устройств. Но при колебаниях перепада давлений в сечении воз-духозаборного отверстия расход наружного воздуха также меняется. Добавление средств измерения воздухозабора позволяет осуществлять настоящий контроль расхода наружного воздуха, а не только установку клапанов. Для рассмотренных условий применения (не требующих специальных средств регулирования) многие фирмы-производители систем ОВК с автоматикой поставляют экономически эффективные системы вентиляции с независимым от давления регулированием расхода наружного воздуха. Компоновка такой системы показана на рис. 2.

Применение системы-DDC/VAV, ориентированных на расчеты по формуле (1), требует корректного подбора вентиляционного оборудования с учетом реальных условий в помещении.
Так, если размер воздухораспределителей системы-VAV существенно завышен, полный расход приточного воздуха для некоторых помещений может оказаться равен расходу наружного воздуха, а расчеты для других зон при этом могут дать очевидно нереальную величину более 100% наружного воздуха.
Даже при корректном подборе оборудования, программного обеспечения и средств шумоглушения эффективная работа системы зависит от надежности регулирования и способности эксплуатационного персонала разобраться в схеме регулирования и обеспечить ее долговременное использование. К счастью, у проектировщиков есть возможность выбора поставщиков оборудования, готовых решить все практические задачи.

Ссылка на основную публикацию
Adblock
detector