0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение пределов огнестойкости железобетонных колонн

Определение пределов огнестойкости железобетонных колонн

Определение пределов огнестойкости строительных конструкций

Определение предела огнестойкости железобетонных конструкций

Исходные данные для железобетонной плиты перекрытия приведены в таблице 1.2.1.1

Вид бетона — легкий бетон плотностью с = 1600 кг/м3 с крупным заполнителем из керамзита; плиты многопустотные, с круглыми пустотами, количество пустот — 6 шт, опирание плит — по двум сторонам.

1) Эффективная толщина многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия к СНиП II-2-80 (Огнестойкость):

2) Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из легкого бетона с эффективной толщиной 140 мм:

Предел огнестойкости плиты 180 мин.

3) Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

4) По таблице 1.2.1.2 (табл. 8 Пособия) определяем предел огнестойкости плиты по потере несущей способности при а = 40 мм, для легкого бетона при опирании по двум сторонам.

Пределы огнестойкости железобетонных плит

Искомый предел огнестойкости 2 ч или 120 мин.

5) Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:

6) Определяем полную нагрузку на плит, как сумма постоянной и временной нагрузок:

7) Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8) Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

9) По п. 2.18 (ч. 1 б) Пособия принимаем коэффициент для арматуры

10) Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет

Исходя из результатов полученных в ходе расчетов мы получили, что предел огнестойкости железобетонной плиты по несущей способности 139 мин., а по теплоизолирующей способности 180 мин. Необходимо брать наименьший предел огнестойкости.

Вывод: предел огнестойкости железобетонной плиты REI 139.

Определение пределов огнестойкости железобетонных колонн

Вид бетона — тяжелый бетон плотностью с = 2350 кг/м3 с крупным заполнителем из карбонатных пород (известняк);

В таблице 1.2.2.1 (табл. 2 Пособия) приведены значения фактических пределов огнестойкости (ПОф) железобетонных колонн с различными характеристиками. При этом ПОф определяется не по толщине защитного слоя бетона, а по расстоянию от поверхности конструкции до оси рабочего арматурного стержня (), которое включает помимо толщины защитного слоя еще и половину диаметра рабочего арматурного стержня.

1) Определяем расстояние от обогреваемой поверхности колонны до оси стержневой арматуры по формуле:

2) Согласно п. 2.15 Пособия для конструкций из бетона с карбонатным заполнителем размер поперечного сечения допускается уменьшать на 10 % при том же пределе огнестойкости. Тогда ширину колонны определим по формуле:

3) По таблице 1.2.2.2 (табл. 2 Пособия) определяем предел огнестойкости для колонны из легкого бетона с параметрами: b = 444 мм, а = 37 мм при обогреве колонны со всех сторон.

Пределы огнестойкости железобетонных колонн

Искомый предел огнестойкости находится в интервале между 1,5 ч и 3 ч. Для определения предела огнестойкости применяем метод линейной интерполяции. Данные приведены в таблице 1.2.2.3

Определение пределов огнестойкости железобетонных колонн

Пособие по определению пределов огнестойкости строительных конструкций, параметров пожарной опасности материалов. Порядок проектирования огнезащиты

Сведения о пособии:

1 РАЗРАБОТАНО ОАО «НИЦ «Строительство» (д.т.н., проф. А.И.Звездов), Центральным научно-исследовательским институтом строительных конструкций (ЦНИИСК) им. В.А.Кучеренко ОАО «НИЦ «Строительство» (д.т.н., проф. И.И. Ведяков; д.т.н., проф. Ю.В.Кривцов; к.т.н., с.н.с. И.Р.Ладыгина; к.т.н., с.н.с. В.В.Пивоваров; В.В.Яшин; П.П.Колесников), при участии Холдинга «Ассоциация КрилаК» (д.э.н., проф. А.К.Микеев; к.т.н., с.н.с. Е.Н.Носов; М.В.Постникова).

2 РЕКОМЕНДОВАНО К ПРИНЯТИЮ секцией «Пожарная безопасность в строительстве» НТС ЦНИИСК им.В.А.Кучеренко ОАО «НИЦ «Строительство» от 06.06.2013 г.

3 РЕКОМЕНДОВАНО ФГБУ ВНИИПО МЧС России для применения в качестве справочного материала в проектных, строительных организациях и органах Государственного пожарного надзора (письмо ФГБУ ВНИИПО МЧС России от 28.06.2013 г. N 2936-13-1-03).

В пособии приведены нормативные требования для назначения пределов огнестойкости строительных конструкций и параметров пожарной опасности материалов, изложены методы определения собственных пределов огнестойкости несущих стальных, железобетонных, деревянных и алюминиевых конструкций с учетом применения огнезащитных покрытий.

В приложении представлены справочные данные по огнезащитным составам и конструкционным материалам в объеме, достаточном для их обоснованного выбора и проведения проектных работ.

В случаях, когда приведенные в Пособии сведения недостаточны для выбора соответствующих решений либо для установления соответствующих показателей огнестойкости строительных конструкций с применением средств огнезащиты, за консультациями следует обращаться в ОАО «НИЦ «Строительство»: НЭБ ПБС ЦНИИСК им.В.А.Кучеренко (тел. 8(499) 170-73-91; e-mail: tsniisk@rambler.ru).

I Требования нормативных документов

I Требования нормативных документов

Нормативные требования пожарной безопасности зданий, сооружений, строительных конструкций, инженерного оборудования и строительных материалов приведены в Федеральном законе от 22 июля 2008 г. N 123-ФЗ «Технический регламент о требованиях пожарной безопасности» в редакции Федерального закона от 10 июля 2012 г. N 117-ФЗ [1].

Пределы огнестойкости строительных конструкций приведены в табл.1 и должны соответствовать принятой степени огнестойкости зданий, сооружений, строений и пожарных отсеков [1].

Степень огнестойкости зданий, сооружений, строений и пожарных отсеков

Предел огнестойкости строительных конструкций, не менее

Несущие элементы здания (стены, колонны и др.)

Наружные ненесущие стены

Перекрытия междуэтажные (в том числе чердачные и над подвалами)

Элементы бесчердачных покрытий

Настилы (в том числе с утеплителем)

Фермы, балки, прогоны

Марши и площадки лестниц

Указанные в таблице 1 пределы огнестойкости соответствуют времени достижения одного или последовательно нескольких признаков предельных состояний: R — потеря несущей способности; Е — потеря целостности; I — потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений.

Пределы огнестойкости определяются в условиях стандартных испытаний по методикам, установленным нормативными документами по пожарной безопасности. Допускается пределы огнестойкости конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, определять расчетно-аналитическими методами, установленными нормативными документами [1].

Класс пожарной опасности строительных конструкций приведен в таблице 2 и должен соответствовать классу конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков [1].

Класс конструктивной пожарной опасности здания

Класс пожарной опасности строительных конструкций

Несущие стержневые элементы (колонны, ригели, фермы)

Наружные стены с внешней стороны

Стены, перегородки, перекрытия и бесчердачные покрытия

Стены лестничных клеток и противопожарные преграды

Марши и площадки лестниц в лестничных клетках

Характеристики пожарной опасности конструкций в зависимости от класса пожарной опасности конструкций приведены в таблице 3 [1].

Класс пожар-
ной опас-
ности конс-
трукций

Допускаемый размер повреждения конструкций, сантиметры

Допускаемые характеристики пожарной опасности поврежденного материала

дымо-
образую-
щей способ-
ности

не регламентиру-
ется

более 40, но не более 80

более 25, но не более 50

не регламентиру-
ется

Примечание — Знак «+» обозначает, что при отсутствии теплового эффекта параметр не регламентируется.

Класс пожарной опасности конструкций определяется по ГОСТ 30403-96 [5].

Класс пожарной опасности материалов должен соответствовать классу здания и категории помещения и определяется исходя из данных, представленных в табл.4 [1].

Класс (подкласс) функциональной пожарной опасности здания

Этажность и высота здания

Класс пожарной опасности материала, не более указанного

для стен и потолков

для покрытия полов

Вестибюли, лестничные клетки, лифтовые холлы

Общие коридоры, холлы, фойе

Вестибюли, лестничные клетки, лифтовые холлы

Общие коридоры, холлы, фойе

Ф1.2; Ф1.3; Ф2.3; Ф2.4; Ф3.1; Ф3.2; Ф3.6; Ф4.2; Ф4.3; Ф4.4; Ф5.1; Ф5.2; Ф5.3

не более 9 этажей или не более 28 м

более 9, но не более 17 этажей или более 28, но не более 50 м

более 17 этажей или более 50 м

Ф1.1; Ф2.1; Ф2.2; Ф3.3; Ф3.4; Ф3.5; Ф4.1

вне зависимости от этажности и высоты

Класс пожарной опасности строительных материалов определяется параметрами их воспламеняемости (группами), приведенными в таблице 5 [1].

Свойства пожарной опасности строительных материалов

Класс пожарной опасности строительных материалов в зависимости от групп

Токсичность продуктов горения

Распространение пламени по поверхности для покрытия полов

В таблице 5 использованы следующие обозначения групп строительных материалов:

Д1 — с малой дымообразующей способностью;

Д2 — с умеренной дымообразующей способностью;

Д3 — с высокой дымообразующей способностью;

Методы определения группы горючести, воспламеняемости, дымообразующей способности, токсичности и распространения пламени изложены в следующих нормативных документах:

В случае, если фактический предел огнестойкости не соответствует требуемому, используются средства для его повышения. К указанным средствам относятся конструктивная огнезащита и тонкослойные огнезащитные покрытия [3].

Конструктивная огнезащита — это способ огнезащиты строительных конструкций, основанный на создании на обогреваемой поверхности конструкции теплоизоляционного слоя средства огнезащиты. К конструктивной огнезащите относятся толстослойные напыляемые составы, огнезащитные обмазки, штукатурки, облицовка плитными, листовыми и другими огнезащитными материалами, в том числе на каркасе, с воздушными прослойками, а также комбинации данных материалов, в том числе с тонкослойными вспучивающимися покрытиями. При этом способ нанесения (крепления) огнезащиты должен соответствовать способу, описанному в протоколе испытаний на огнестойкость и в проекте огнезащиты.

Тонкослойное огнезащитное покрытие — это способ огнезащиты строительных конструкций, основанный на нанесении на обогреваемую поверхность конструкции специальных лакокрасочных составов с толщиной сухого слоя не превышающей 3 мм, увеличивающих ее многократно при нагревании.

Применение данных способов огнезащиты регламентируется [3].

В зданиях I и II степеней огнестойкости для обеспечения требуемого предела огнестойкости несущих элементов здания, отвечающих за его общую устойчивость и геометрическую неизменяемость при пожаре, следует применять конструктивную огнезащиту.

Применение тонкослойных огнезащитных покрытий для стальных конструкций, являющихся несущими элементами зданий I и II степеней огнестойкости, допускается для конструкций с приведенной толщиной металла не менее 5,8 мм.

Если требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости хотя бы одного из элементов несущих конструкций (структурных элементов ферм, балок, колонн и т.п.) по результатам испытаний составляет менее R 8.

Средства огнезащиты для стальных и железобетонных строительных конструкций следует использовать при условии оценки предела огнестойкости конструкций с нанесенными средствами огнезащиты по [18, 21], с учетом способа крепления (нанесения), указанного в технической документации на огнезащиту, и (или) разработки проекта огнезащиты.

Читать еще:  Воронежский государственный архитектурностроительный университет

Выбор вида огнезащиты осуществляется с учетом режима эксплуатации объекта защиты и установленных сроков эксплуатации огнезащитного покрытия. В случае строительства зданий и сооружений в сейсмическом районе при применении средств огнезащиты должны выполняться требования [4].

Не допускается использовать огнезащитные покрытия и пропитки в местах, исключающих возможность периодической замены или восстановления, а также контроля их состояния.

Покрытия, предназначенные для повышения предела огнестойкости несущих металлоконструкций, характеризуются группой огнезащитной эффективности, определяемой по методике, изложенной в ГОСТ Р 53295-2009 [10]. За предельное состояние принимается достижение критической температуры 500°С опытного образца с нанесенным покрытием (стальная колонна двутаврового сечения профиля N 20 по ГОСТ 8239-89 [11] или профиля N 20Б1 по ГОСТ 26020-83 [12] высотой 1700 мм) в условиях стандартных испытаний.

Огнезащитная эффективность средств огнезащиты в зависимости от наступления предельного состояния металлоконструкции подразделяется на семь групп [10]:

1-я группа — не менее 150 мин.;

2-я группа — не менее 120 мин.;

3-я группа — не менее 90 мин.;

4-я группа — не менее 60 мин.;

5-я группа — не менее 45 мин.;

6-я группа — не менее 30 мин.;

7-я группа — не менее 15 мин.

Покрытия, предназначенные для повышения предела огнестойкости несущих деревянных конструкций, характеризуются группой огнезащитной эффективности, определяемой по методике, изложенной в ГОСТ Р 53292-2009 [13] и зависящей от потери массы образца (бруски из древесины сосны с поперечным сечением 30 60 мм и длиной вдоль волокон 150 мм) в условиях стандартных испытаний.

Определены следующие группы огнезащитной эффективности [13]:

I-я группа — потеря массы не более 9%;

II-я группа — потеря массы более 9%, но не более 25%.

При потере массы более 25% состав не является огнезащитным.

Параметр огнезащитной эффективности носит классификационно-сравнительный характер и не может быть непосредственно использован для оценки нормируемых пожарно-технических характеристик строительных конструкций — предела огнестойкости и показателей пожарной опасности.

Исходные данные для проведения этих оценок предоставляются разработчиком средств защиты по результатам испытаний образцов с проектными параметрами.

Для зданий, сооружений, строений, для которых отсутствуют нормативные требования, разрабатываются специальные технические условия, отражающие специфику обеспечения их пожарной безопасности и содержащие комплекс необходимых инженерно-технических и организационных мероприятий.

Помимо показателей огнестойкости при выборе огнезащиты должны учитываться следующие параметры составов и технологии нанесения:

условия хранения и эксплуатации;

сейсмостойкость (для объектов, возводимых в сейсмостойких районах);

возможность дезактиваций (для объектов атомной энергетики);

возможность дегазации (для объектов химических производств);

возможность и периодичность замены или восстановления;

способы подготовки поверхности;

марки декоративных и защитных покрытий;

инструмент и агрегаты для нанесения.

В Приложении к данному пособию приведена номенклатура огнезащитных составов и материалов для обеспечения требуемых параметров пожарной безопасности металлических, деревянных и железобетонных несущих конструкций. Объем приведенных сведений достаточен для обоснованного выбора типа и марки покрытий во всем диапазоне изменения требований огнестойкости и характеристик строительных конструкций.

Все составы и материалы, приведенные в Приложении, испытаны по расширенной программе с использованием стандартных методик. Их результаты представлены в виде матриц зависимости экспериментально полученных пределов огнестойкости металлоконструкций с нанесенными на них огнезащитными покрытиями от толщины этого покрытия и приведенной толщины металла элемента конструкции. Указанные данные предоставляются разработчиком материалов по конкретному запросу.

II Порядок проектирования огнезащиты несущих строительных конструкций

Проектная документация разрабатывается в соответствии с действующими нормами и правилами пожарной безопасности и на основании рабочей документации на строительство, ремонт или реконструкцию объекта.

Разработка проекта огнезащиты включает в себя поэтапное выполнение следующих мероприятий.

1 Анализ технической документации проекта.

2 Определение требуемых пределов огнестойкости несущих конструкций.

3 Разложение общей схемы несущего каркаса здания на отдельные элементы.

4 Расчет собственных пределов огнестойкости элементов.

5 Определение необходимости нанесения огнезащитного покрытия на элементы.

6 Подбор средств огнезащиты.

7 Расчет потребной толщины огнезащиты для каждого элемента.

Пределы огнестойкости строительных конструкций определяются с использованием данных, приведенных в табл.3.

II.1 Порядок проектирования огнезащиты несущих металлических конструкций

Оценка собственных пределов огнестойкости стержневых стальных конструкций (без огнезащиты) проводится по табл.6, составленной на основе расчетных данных [14].

Приведенная толщина металла (ПТМ), мм

Собственный предел огнестойкости (Пф), мин

Расчет фактического предела огнестойкости железобетонной колонны

Определяем прочностные характеристики материалов:

МПа,

где: Rsn – нормативное сопротивление арматурной стали сжатию (табл. 19 [10] или п. 3.1.2. [5]);

gа=0,9 – коэффициент надежности по материалу для арматуры [12], [11].

Rbn = 15 МПа (табл. 12 [10] или п. 3.2.1 [5]);

где: Rит – нормативное сопротивление (призменная прочность) бетона осевому сжатию (табл. 12 [10]);

gа=0,83 – коэффициент надежности по материалу для бетона [11].

Определяем теплофизические характеристики бетона (п. 3.2.3. [5]):

lt = 1,3 – 0,00035 × 723 = 1,04 Вт/м × К;

сt = 481 + 0,84 × 723 = 1088 Дж/кг × К;

м 2 /с.

Определим суммарную площадь арматурных стержней (п. 3.1.1. [5]):

Для расчета Nt = f (t) задаемся интервалами времени t1 = 0 ч; t1 = 1 ч; t1 = 2 ч.

Вычисляем Nt при t2 = 1 ч, предварительно решив теплотехническую часть задачи огнестойкости, т.е. определив температуру арматурных стержней и размеры ядра поперечного сечения колонны.

Определим критерий Фурье:

,

где К = 37,2 с 0,5 (п. 3.2.8. [5]).

Определим относительное расстояние:

,

где х = у = 0,5h – a – 0.5d = 0.5 ∙ 0,4 – 0,031 – 0,5 ∙ 0,018 = 0,16 м.

Определяем относительную избыточную температуру (п. 3.2.4. [5]):

Определяем температуру арматурных стержней (с учетом всестороннего обогрева колонны):

˚С,

С использованием п.3.1.5. [5] интерполяцией определяем γst = 0.79.

Для определения размеров ядра поперечного сечения необходимо определить ξя,х , предварительно вычислив температуру в центре «ядра»:

Величину Θц определяем по п.3.2.5. [5] при Fox / 4 = 0.027 / 4 = 0.0067; Θц = 1;

Определяем относительную температуру на границе «ядра» поперечного сечения колонны:

,

где tbcr = 500˚С при -6 ∙ 0,79) = 2,2 МН,

Для интервала времени t3 = 2 ч:

;

˚С;

.

м;

Nt,2 = 0,79(18,07 ∙ 0,326 ∙ 0,326 + 433,3 + 1219 ∙ 10 -6 ∙ 0,14) = 1,57 МН,

Для определения фактического предела огнестойкости строим график изменения несущей способности колонны от времени нагрева (прил. 2 рис. 8) при:

По графику (прил. 2 рис. 8) фактический предел огнестойкости

Проверка соответствия огнестойкости и пожарной опасности строительных конструкций противопожарным требованиям и предлагаемые технические решения по повышению их огнестойкости

Для каждого пожарного отсека проверяемого здания в первом разделе были определены нормативные показатели огнестойкости и пожарной опасности.

Фактические пределы огнестойкости некоторых строительных конструкций здания были определены расчетным методом. Для того, чтобы проверить соответствие строительных конструкций и здания в целом требованиям норм определим фактические пределы огнестойкости остальных конструкций с использованием пособия [8].

Определение фактического предела огнестойкости сплошных плит перекрытия

В соответствии с исходными данными (прил.1 табл.7) по табл.8 [8] определяем, что фактический предел огнестойкости и фактический предел распространения пламени по конструкции соответственно составляют: Пф = 1,1 ч и ввиду того, что конструкция является негорючей, то фактический класс пожарной опасности конструкций в соответствии с табл. 1 [4] принимаем К0.

Определение фактического предела огнестойкости железобетонных ригелей перекрытия

В соответствии с исходными данными (прил.1 табл.8) по табл.6 [8] определяем, что фактический предел огнестойкости и фактический предел распространения пламени по конструкции соответственно составляют: Пф = 1 ч и ввиду того, что конструкция является негорючей, то фактический класс пожарной опасности конструкций в соответствии с табл. 1 [4] принимаем К0.

Определение фактического предела огнестойкости железобетонных ребристых плит покрытия

В соответствии с исходными данными (прил.1 табл.9) по табл.8 [8] определяем, что фактический предел огнестойкости и фактический предел распространения пламени по конструкции соответственно составляют: Пф = 2 ч и ввиду того, что конструкция является негорючей, то фактический класс пожарной опасности конструкций в соответствии с табл. 1 [4] принимаем К0.

Определение фактического предела огнестойкости кирпичных

В соответствии с исходными данными (прил.1 табл.10) по табл.10 [8] определяем, что фактический предел огнестойкости и фактический предел распространения пламени по конструкции соответственно составляют: Пф

Ооо архитектурная производственная компания. Определение пределов огнестойкости железобетонных колонн Предел огнестойкости плит перекрытия

Определение пределов огнестойкости строительных конструкций

Определение предела огнестойкости железобетонных конструкций

Исходные данные для железобетонной плиты перекрытия приведены в таблице 1.2.1.1

Вид бетона — легкий бетон плотностью с = 1600 кг/м3 с крупным заполнителем из керамзита; плиты многопустотные, с круглыми пустотами, количество пустот — 6 шт, опирание плит — по двум сторонам.

1) Эффективная толщина многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия к СНиП II-2-80 (Огнестойкость):

2) Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из легкого бетона с эффективной толщиной 140 мм:

Предел огнестойкости плиты 180 мин.

3) Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

4) По таблице 1.2.1.2 (табл. 8 Пособия) определяем предел огнестойкости плиты по потере несущей способности при а = 40 мм, для легкого бетона при опирании по двум сторонам.

Пределы огнестойкости железобетонных плит

Искомый предел огнестойкости 2 ч или 120 мин.

5) Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:

6) Определяем полную нагрузку на плит, как сумма постоянной и временной нагрузок:

7) Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8) Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

9) По п. 2.18 (ч. 1 б) Пособия принимаем коэффициент для арматуры

10) Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет

Исходя из результатов полученных в ходе расчетов мы получили, что предел огнестойкости железобетонной плиты по несущей способности 139 мин., а по теплоизолирующей способности 180 мин. Необходимо брать наименьший предел огнестойкости.

Вывод: предел огнестойкости железобетонной плиты REI 139.

Определение пределов огнестойкости железобетонных колонн

Вид бетона — тяжелый бетон плотностью с = 2350 кг/м3 с крупным заполнителем из карбонатных пород (известняк);

В таблице 1.2.2.1 (табл. 2 Пособия) приведены значения фактических пределов огнестойкости (ПОф) железобетонных колонн с различными характеристиками. При этом ПОф определяется не по толщине защитного слоя бетона, а по расстоянию от поверхности конструкции до оси рабочего арматурного стержня (), которое включает помимо толщины защитного слоя еще и половину диаметра рабочего арматурного стержня.

Читать еще:  Плюсы и минусы дома из шлакоблоков

1) Определяем расстояние от обогреваемой поверхности колонны до оси стержневой арматуры по формуле:

2) Согласно п. 2.15 Пособия для конструкций из бетона с карбонатным заполнителем размер поперечного сечения допускается уменьшать на 10 % при том же пределе огнестойкости. Тогда ширину колонны определим по формуле:

3) По таблице 1.2.2.2 (табл. 2 Пособия) определяем предел огнестойкости для колонны из легкого бетона с параметрами: b = 444 мм, а = 37 мм при обогреве колонны со всех сторон.

Пределы огнестойкости железобетонных колонн

Искомый предел огнестойкости находится в интервале между 1,5 ч и 3 ч. Для определения предела огнестойкости применяем метод линейной интерполяции. Данные приведены в таблице 1.2.2.3

Самый распространенный материал в
строительстве — это железобетон. Он сочетает в себе бетон и стальную арматуру,
рационально уложенную в конструкции для восприятия растягивающих и сжимающих
усилий.

Бетон хорошо сопротивляется сжатию и
хуже – растяжению. Эта особенность бетона неблагоприятна для изгибаемых и
растянутых элементов. Наиболее распространенными изгибаемыми элементами здания
являются плиты и балки.

Для компенсации неблагоприятных
процессов бетона, конструкции принято армировать стальной арматурой. Армируют
плиты сварными сетками, состоящими из стержней, расположенных в двух взаимно
перпендикулярных направлениях. Сетки укладывают в плитах таким образом, что
стержни их рабочей арматуры располагались вдоль пролета и воспринимали
растягивающие усилия, возникающие в конструкциях при изгибе под нагрузкой, в
соответствии с эпюрой изгибающих нагрузок.

В
условиях пожара плиты подвергаются воздействию высокой температуры снизу,
уменьшение их несущей способности происходит в основном за счет снижения
прочности нагревающейся растянутой арматуры. Как правило, такие элементы
разрушаются в результате образования пластического шарнира в сечении с
максимальным изгибающим моментом за счет снижения предела прочности
нагревающейся растянутой арматуры до величины рабочих напряжений в ее сечении.

Обеспечение пожарной
безопасности здания требует усиления огнестойкости и огнесохранности
железобетонных конструкций. Для этого используются следующие технологии:

  • армирование плит производить
    только вязаными или сварными каркасами, а не отдельными стержнями россыпью;
  • во избежание выпучивания продольной арматуры при ее нагреве во
    время пожара необходимо предусмотреть конструктивное армирование хомутами или
    поперечными стержнями;
  • толщина нижнего защитного слоя бетона перекрытия должна быть
    достаточной для того, чтобы он прогревался не выше 500°С и после пожара не
    оказывал влияние на дальнейшую безопасную эксплуатацию конструкции.
    Исследованиями установлено, что при нормируемом пределе огнестойкости R=120, толщина
    защитного слоя бетона должна быть не менее 45 мм, при R=180 — не менее 55 мм,
    при R=240 — не менее 70 мм;
  • в защитном слое бетона на глубине 15–20 мм со стороны нижней
    поверхности перекрытия следует предусмотреть противооткольную арматурную сетку
    из проволоки диаметром 3 мм с размером ячейки 50–70 мм, снижающую интенсивность
    взрывообразного разрушения бетона;
  • усиление приопорных участков тонкостенных перекрытий поперечной
    арматурой, не предусмотренной обычным расчетом;
  • увеличение предела огнестойкости за счет расположения плит,
    опертых по контуру;
  • применение специальных штукатурок (с использованием асбеста и
    перлита, вермикулита). Даже при малых величинах таких штукатурок (1,5 — 2 см)
    огнестойкость железобетонных плит увеличивается в несколько раз (2 — 5);
  • увеличение предела огнестойкости за счет подвесного потолка;
  • защита узлов и сочленений конструкций слоем бетона с требуемым
    пределом огнестойкости.

Эти меры обеспечат должную противопожарную безопасность здания.
Железобетонная конструкция приобретет необходимую огнестойкость и
огнесохранность.

Используемая литература:
1.Здания и сооружения, и их устойчивость
при пожаре. Академия ГПС МЧС России, 2003
2. МДС 21-2.2000.
Методические рекомендации по расчету огнестойкости железобетонных конструкций.
— М. : ГУП «НИИЖБ», 2000. — 92 с.

Легкий бетон плотностью? = 1600 кг/м3 с крупным заполнителем из керамзита, плиты с круглыми пустотами количеством 6 шт., опирание плит — свободное, по двум сторонам.

1. Определим эффективную толщину многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия:

где — толщина плиты, мм;

  • — ширина плиты, мм;
  • — количество пустот, шт.;
  • — диаметр пустот, мм.
  • 2. Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из тяжелого бетона часть с эффективной толщиной 140 мм:

Предел огнестойкости плиты по потере теплоизолирующей способности

3. Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

где — толщина защитного слоя бетона, мм;

  • — диаметр рабочей арматуры, мм.
  • 4. По табл. 8 Пособия определяем предел огнестойкости плиты по потере несущей способности при а = 24 мм, для тяжелого бетона и при опирании по двум сторонам.

Искомый предел огнестойкости находится в интервале между 1 ч и 1,5 ч, определяем его методом линейной интерполяции:

Предел огнестойкости плиты без учёта поправочных коэффициентов — 1,25 ч.

  • 5. Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:
  • 6. Определяем полную нагрузку на плиту, как сумму постоянной и временной нагрузок:
  • 7. Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8. Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

  • 9. По п. 2.18 (ч. 1 а) Пособия принимаем коэффициент? для арматуры А-VI:
  • 10. Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет R 98.

За предел огнестойкости плиты принимаем меньшее из двух значений — по потере теплоизолирующей способности (180 мин) и по потере несущей способности (98мин).

Вывод: предел огнестойкости железобетонной плиты составляет REI 98

Для решения статической части задачи форму поперечного сечения железобетонной плиты перекрытия с круглыми пустотами (прил.2 рис. 6.) приводим к расчетной тавровой.

Определим изгибающий момент в середине пролета от действия нормативной нагрузки и собственного веса плиты:

где q / n – нормативная нагрузка на 1 погонный метр плиты, равная:

Расстояние от нижней (обогреваемой) поверхности панели до оси рабочей арматуры составит:

мм,

где d – диаметр арматурных стержней, мм.

Среднее расстояние составит:

мм,

где А – площадь поперечного сечения арматурного стержня (п. 3.1.1. ), мм 2 .

Определим основные размеры расчетного таврового поперечного сечения панели:

Высота: h f = 0,5 (h -П) = 0,5 (220 – 159) = 30,5 мм;

Расстояние от не обогреваемой поверхности конструкции до оси арматурного стержня h o = h a = 220 – 21 = 199 мм.

Определяем прочностные и теплофизические характеристики бетона:

Нормативное сопротивление по пределу прочности R bn = 18,5 МПа (табл. 12 или п. 3.2.1 для бетона класса В25);

Коэффициент надежности b = 0,83 ;

Расчетное сопротивление бетона по пределу прочности R bu = R bn / b = 18,5 / 0,83 = 22,29 МПа;

Коэффициент теплопроводности t = 1,3 – 0,00035Т ср = 1,3 – 0,00035 723 = 1,05 Вт м -1 К -1 (п. 3.2.3. ),

где Т ср – средняя температура при пожаре, равная 723 К;

Удельная теплоемкость С t = 481 + 0,84Т ср = 481 + 0,84 · 723 = 1088,32 Дж кг -1 К -1 (п. 3.2.3. );

Приведенный коэффициент температуропроводности:

Коэффициенты, зависящие от средней плотности бетона К = 39 с 0,5 иК 1 = 0,5 (п.3.2.8, п.3.2.9. ).

Определяем высоту сжатой зоны плиты:

Определяем напряжение в растянутой арматуре от внешней нагрузки в соответствии с прил. 4:

так как х t = 8,27 ммh f = 30,5 мм, то

где As – суммарная площадь поперечного сечения арматурных стержней в растянутой зоне поперечного сечения конструкции, равная для 5 стержней12 мм 563 мм 2 (п. 3.1.1. ).

Определим критическое значение коэффициента изменения прочности арматурной стали:

,

где R su – расчетное сопротивление арматуры по пределу прочности, равное:

R su = R sn / s = 390 / 0,9 = 433,33 МПа (здесь s – коэффициент надежности для арматуры, принимаемый равным 0,9 );

R sn – нормативное сопротивление арматуры по пределу прочности, равное 390 МПа (табл. 19 или п. 3.1.2 ).

Получили, что stcr 1. Значит, напряжения от внешней нагрузки в растянутой арматуре превышают нормативное сопротивление арматуры. Следовательно, необходимо снизить напряжение от внешней нагрузки в арматуре. Для этого увеличим число арматурных стержней панели12мм до 6.Тогда A s = 679 10 -6 (п. 3.1.1. ).

МПа,

.

Определим критическую температуру нагрева несущей арматуры в растянутой зоне.

По таблице п. 3.1.5. с помощью линейной интерполяции определяем, что для арматуры класса А-III, марки стали 35 ГС и stcr = 0,93.

Время прогрева арматуры до критической температуры для плиты сплошного поперечного сечения будет являться фактическим пределом огнестойкости.

с = 0,96 ч,

где Х – аргумент функции ошибок Гаусса (Крампа), равный 0,64 (п.3.2.7. ) в зависимости от величины функции ошибок Гаусса (Крампа), равной:

(здесь t н – температура конструкции до пожара, принимаем равной 20С).

Фактический предел огнестойкости плиты перекрытия с круглыми пустотами составит:

где 0,9 – коэффициент, учитывающий наличие в плите пустот.

Так как бетон – негорючий материал, то, очевидно, фактический класс пожарной опасности конструкции К0.

Ооо архитектурная производственная компания. Определение пределов огнестойкости железобетонных колонн Предел огнестойкости плит перекрытия

Определение пределов огнестойкости строительных конструкций

Определение предела огнестойкости железобетонных конструкций

Исходные данные для железобетонной плиты перекрытия приведены в таблице 1.2.1.1

Вид бетона — легкий бетон плотностью с = 1600 кг/м3 с крупным заполнителем из керамзита; плиты многопустотные, с круглыми пустотами, количество пустот — 6 шт, опирание плит — по двум сторонам.

1) Эффективная толщина многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия к СНиП II-2-80 (Огнестойкость):

2) Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из легкого бетона с эффективной толщиной 140 мм:

Предел огнестойкости плиты 180 мин.

3) Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

4) По таблице 1.2.1.2 (табл. 8 Пособия) определяем предел огнестойкости плиты по потере несущей способности при а = 40 мм, для легкого бетона при опирании по двум сторонам.

Пределы огнестойкости железобетонных плит

Читать еще:  Сущность методики расчета пределов огнестойкости строительных конструкций

Искомый предел огнестойкости 2 ч или 120 мин.

5) Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:

6) Определяем полную нагрузку на плит, как сумма постоянной и временной нагрузок:

7) Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8) Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

9) По п. 2.18 (ч. 1 б) Пособия принимаем коэффициент для арматуры

10) Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет

Исходя из результатов полученных в ходе расчетов мы получили, что предел огнестойкости железобетонной плиты по несущей способности 139 мин., а по теплоизолирующей способности 180 мин. Необходимо брать наименьший предел огнестойкости.

Вывод: предел огнестойкости железобетонной плиты REI 139.

Определение пределов огнестойкости железобетонных колонн

Вид бетона — тяжелый бетон плотностью с = 2350 кг/м3 с крупным заполнителем из карбонатных пород (известняк);

В таблице 1.2.2.1 (табл. 2 Пособия) приведены значения фактических пределов огнестойкости (ПОф) железобетонных колонн с различными характеристиками. При этом ПОф определяется не по толщине защитного слоя бетона, а по расстоянию от поверхности конструкции до оси рабочего арматурного стержня (), которое включает помимо толщины защитного слоя еще и половину диаметра рабочего арматурного стержня.

1) Определяем расстояние от обогреваемой поверхности колонны до оси стержневой арматуры по формуле:

2) Согласно п. 2.15 Пособия для конструкций из бетона с карбонатным заполнителем размер поперечного сечения допускается уменьшать на 10 % при том же пределе огнестойкости. Тогда ширину колонны определим по формуле:

3) По таблице 1.2.2.2 (табл. 2 Пособия) определяем предел огнестойкости для колонны из легкого бетона с параметрами: b = 444 мм, а = 37 мм при обогреве колонны со всех сторон.

Пределы огнестойкости железобетонных колонн

Искомый предел огнестойкости находится в интервале между 1,5 ч и 3 ч. Для определения предела огнестойкости применяем метод линейной интерполяции. Данные приведены в таблице 1.2.2.3

Самый распространенный материал в
строительстве — это железобетон. Он сочетает в себе бетон и стальную арматуру,
рационально уложенную в конструкции для восприятия растягивающих и сжимающих
усилий.

Бетон хорошо сопротивляется сжатию и
хуже – растяжению. Эта особенность бетона неблагоприятна для изгибаемых и
растянутых элементов. Наиболее распространенными изгибаемыми элементами здания
являются плиты и балки.

Для компенсации неблагоприятных
процессов бетона, конструкции принято армировать стальной арматурой. Армируют
плиты сварными сетками, состоящими из стержней, расположенных в двух взаимно
перпендикулярных направлениях. Сетки укладывают в плитах таким образом, что
стержни их рабочей арматуры располагались вдоль пролета и воспринимали
растягивающие усилия, возникающие в конструкциях при изгибе под нагрузкой, в
соответствии с эпюрой изгибающих нагрузок.

В
условиях пожара плиты подвергаются воздействию высокой температуры снизу,
уменьшение их несущей способности происходит в основном за счет снижения
прочности нагревающейся растянутой арматуры. Как правило, такие элементы
разрушаются в результате образования пластического шарнира в сечении с
максимальным изгибающим моментом за счет снижения предела прочности
нагревающейся растянутой арматуры до величины рабочих напряжений в ее сечении.

Обеспечение пожарной
безопасности здания требует усиления огнестойкости и огнесохранности
железобетонных конструкций. Для этого используются следующие технологии:

  • армирование плит производить
    только вязаными или сварными каркасами, а не отдельными стержнями россыпью;
  • во избежание выпучивания продольной арматуры при ее нагреве во
    время пожара необходимо предусмотреть конструктивное армирование хомутами или
    поперечными стержнями;
  • толщина нижнего защитного слоя бетона перекрытия должна быть
    достаточной для того, чтобы он прогревался не выше 500°С и после пожара не
    оказывал влияние на дальнейшую безопасную эксплуатацию конструкции.
    Исследованиями установлено, что при нормируемом пределе огнестойкости R=120, толщина
    защитного слоя бетона должна быть не менее 45 мм, при R=180 — не менее 55 мм,
    при R=240 — не менее 70 мм;
  • в защитном слое бетона на глубине 15–20 мм со стороны нижней
    поверхности перекрытия следует предусмотреть противооткольную арматурную сетку
    из проволоки диаметром 3 мм с размером ячейки 50–70 мм, снижающую интенсивность
    взрывообразного разрушения бетона;
  • усиление приопорных участков тонкостенных перекрытий поперечной
    арматурой, не предусмотренной обычным расчетом;
  • увеличение предела огнестойкости за счет расположения плит,
    опертых по контуру;
  • применение специальных штукатурок (с использованием асбеста и
    перлита, вермикулита). Даже при малых величинах таких штукатурок (1,5 — 2 см)
    огнестойкость железобетонных плит увеличивается в несколько раз (2 — 5);
  • увеличение предела огнестойкости за счет подвесного потолка;
  • защита узлов и сочленений конструкций слоем бетона с требуемым
    пределом огнестойкости.

Эти меры обеспечат должную противопожарную безопасность здания.
Железобетонная конструкция приобретет необходимую огнестойкость и
огнесохранность.

Используемая литература:
1.Здания и сооружения, и их устойчивость
при пожаре. Академия ГПС МЧС России, 2003
2. МДС 21-2.2000.
Методические рекомендации по расчету огнестойкости железобетонных конструкций.
— М. : ГУП «НИИЖБ», 2000. — 92 с.

Легкий бетон плотностью? = 1600 кг/м3 с крупным заполнителем из керамзита, плиты с круглыми пустотами количеством 6 шт., опирание плит — свободное, по двум сторонам.

1. Определим эффективную толщину многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия:

где — толщина плиты, мм;

  • — ширина плиты, мм;
  • — количество пустот, шт.;
  • — диаметр пустот, мм.
  • 2. Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из тяжелого бетона часть с эффективной толщиной 140 мм:

Предел огнестойкости плиты по потере теплоизолирующей способности

3. Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

где — толщина защитного слоя бетона, мм;

  • — диаметр рабочей арматуры, мм.
  • 4. По табл. 8 Пособия определяем предел огнестойкости плиты по потере несущей способности при а = 24 мм, для тяжелого бетона и при опирании по двум сторонам.

Искомый предел огнестойкости находится в интервале между 1 ч и 1,5 ч, определяем его методом линейной интерполяции:

Предел огнестойкости плиты без учёта поправочных коэффициентов — 1,25 ч.

  • 5. Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:
  • 6. Определяем полную нагрузку на плиту, как сумму постоянной и временной нагрузок:
  • 7. Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8. Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

  • 9. По п. 2.18 (ч. 1 а) Пособия принимаем коэффициент? для арматуры А-VI:
  • 10. Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет R 98.

За предел огнестойкости плиты принимаем меньшее из двух значений — по потере теплоизолирующей способности (180 мин) и по потере несущей способности (98мин).

Вывод: предел огнестойкости железобетонной плиты составляет REI 98

Для решения статической части задачи форму поперечного сечения железобетонной плиты перекрытия с круглыми пустотами (прил.2 рис. 6.) приводим к расчетной тавровой.

Определим изгибающий момент в середине пролета от действия нормативной нагрузки и собственного веса плиты:

где q / n – нормативная нагрузка на 1 погонный метр плиты, равная:

Расстояние от нижней (обогреваемой) поверхности панели до оси рабочей арматуры составит:

мм,

где d – диаметр арматурных стержней, мм.

Среднее расстояние составит:

мм,

где А – площадь поперечного сечения арматурного стержня (п. 3.1.1. ), мм 2 .

Определим основные размеры расчетного таврового поперечного сечения панели:

Высота: h f = 0,5 (h -П) = 0,5 (220 – 159) = 30,5 мм;

Расстояние от не обогреваемой поверхности конструкции до оси арматурного стержня h o = h a = 220 – 21 = 199 мм.

Определяем прочностные и теплофизические характеристики бетона:

Нормативное сопротивление по пределу прочности R bn = 18,5 МПа (табл. 12 или п. 3.2.1 для бетона класса В25);

Коэффициент надежности b = 0,83 ;

Расчетное сопротивление бетона по пределу прочности R bu = R bn / b = 18,5 / 0,83 = 22,29 МПа;

Коэффициент теплопроводности t = 1,3 – 0,00035Т ср = 1,3 – 0,00035 723 = 1,05 Вт м -1 К -1 (п. 3.2.3. ),

где Т ср – средняя температура при пожаре, равная 723 К;

Удельная теплоемкость С t = 481 + 0,84Т ср = 481 + 0,84 · 723 = 1088,32 Дж кг -1 К -1 (п. 3.2.3. );

Приведенный коэффициент температуропроводности:

Коэффициенты, зависящие от средней плотности бетона К = 39 с 0,5 иК 1 = 0,5 (п.3.2.8, п.3.2.9. ).

Определяем высоту сжатой зоны плиты:

Определяем напряжение в растянутой арматуре от внешней нагрузки в соответствии с прил. 4:

так как х t = 8,27 ммh f = 30,5 мм, то

где As – суммарная площадь поперечного сечения арматурных стержней в растянутой зоне поперечного сечения конструкции, равная для 5 стержней12 мм 563 мм 2 (п. 3.1.1. ).

Определим критическое значение коэффициента изменения прочности арматурной стали:

,

где R su – расчетное сопротивление арматуры по пределу прочности, равное:

R su = R sn / s = 390 / 0,9 = 433,33 МПа (здесь s – коэффициент надежности для арматуры, принимаемый равным 0,9 );

R sn – нормативное сопротивление арматуры по пределу прочности, равное 390 МПа (табл. 19 или п. 3.1.2 ).

Получили, что stcr 1. Значит, напряжения от внешней нагрузки в растянутой арматуре превышают нормативное сопротивление арматуры. Следовательно, необходимо снизить напряжение от внешней нагрузки в арматуре. Для этого увеличим число арматурных стержней панели12мм до 6.Тогда A s = 679 10 -6 (п. 3.1.1. ).

МПа,

.

Определим критическую температуру нагрева несущей арматуры в растянутой зоне.

По таблице п. 3.1.5. с помощью линейной интерполяции определяем, что для арматуры класса А-III, марки стали 35 ГС и stcr = 0,93.

Время прогрева арматуры до критической температуры для плиты сплошного поперечного сечения будет являться фактическим пределом огнестойкости.

с = 0,96 ч,

где Х – аргумент функции ошибок Гаусса (Крампа), равный 0,64 (п.3.2.7. ) в зависимости от величины функции ошибок Гаусса (Крампа), равной:

(здесь t н – температура конструкции до пожара, принимаем равной 20С).

Фактический предел огнестойкости плиты перекрытия с круглыми пустотами составит:

где 0,9 – коэффициент, учитывающий наличие в плите пустот.

Так как бетон – негорючий материал, то, очевидно, фактический класс пожарной опасности конструкции К0.

Ссылка на основную публикацию
Adblock
detector