1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздушные прослойки в ограждающих конструкциях

Ограждения с воздушными прослойками;

Одним из приемов, повышающих теплоизоляционные качества ограждений, является устройство воздушной прослойки. Ее используют в конструкциях наружных стен, перекрытий, окон, витражей. В стенах и перекрытиях ее применяют и для предупреждения переувлажнения конструкций.

Воздушная прослойка может быть герметичной или вентилируемой.

Рассмотрим теплопередачу герметичной воздушной прослойки.

Термическое сопротивление воздушной прослойки Ral нельзя определять как сопротивление теплопроводности слоя воздуха, так как перенос тепла через прослойку при разности температур на поверхностях происходит, в основном, путем конвекции и излучения (рис.3.14). Количество тепла,

передаваемого путем теплопроводности, мало, так как мал коэффициент теплопроводности воздуха (0,026 Вт/(м·ºС)).

В прослойках, в общем случае, воздух находится в движении. В вертикальных — он перемещается вверх вдоль теплой поверхности и вниз – вдоль холодной. Имеет место конвективный теплообмен, и его интенсивность возрастает с увеличением толщины прослойки, поскольку уменьшается трение воздушных струй о стенки. При передаче тепла конвекцией преодолевается сопротивление пограничных слоев воздуха у двух поверхностей, поэтому для расчета этого количества тепла коэффициент теплоотдачи αк следует уменьшить вдвое.

Для описания теплопереноса совместно конвекцией и теплопроводностью обычно вводят коэффициент конвективного теплообмена α’к, равный

где λa и δal – коэффициент теплопроводности воздуха и толщина воздушной прослойки, соответственно.

Этот коэффициент зависит от геометрической формы и размеров воздушных прослоек, направления потока тепла. Путем обобщения большого количества экспериментальных данных на основе теории подобия М.А.Михеев установил определенные закономерности для α’к . В таблице 3.5 в качестве примера приведены значения коэффициентов α’к , рассчитанные им при средней температуре воздуха в вертикальной прослойке t = + 10º С.

Коэффициенты конвективного теплообмена в вертикальной воздушной прослойке

Коэффициент конвективного теплообмена в горизонтальных воздушных прослойках зависит от направления теплового потока. Если верхняя поверхность нагрета больше, чем нижняя, движения воздуха почти не будет, так как теплый воздух сосредоточен вверху, а холодный – внизу. Поэтому достаточно точно будет выполняться равенство

Следовательно, конвективный теплообмен существенно уменьшается, а термическое сопротивление прослойки увеличивается. Горизонтальные воздушные прослойки эффективны, например, при их использовании в утепленных цокольных перекрытиях над холодными подпольями, где тепловой поток направлен сверху вниз.

Если поток тепла направлен снизу вверх, то возникают восходящие и нисходящие потоки воздуха. Передача тепла конвекцией играет существенную роль, и значение α’к возрастает.

Для учета действия теплового излучения вводится коэффициент лучистого теплообмена αл (Глава 2, п.2.5).

Пользуясь формулами (2.13), (2.17), (2.18) определим коэффициент теплообмена излучением αл в воздушной прослойке между конструктивными слоями кирпичной кладки. Температуры поверхностей: t1 = + 15 ºС, t2 = + 5 ºС; степень черноты кирпича: ε1= ε2= 0,9.

По формуле (2.13) найдем, что ε = 0,82. Температурный коэффициент θ = 0,91. Тогда αл = 0,82∙5,7∙0,91 = 4,25 Вт/(м 2 ·ºС).

Величина αл намного больше α’к (см табл.3.5), следовательно, основное количество тепла через прослойку переносится излучением. Для того, чтобы уменьшить этот тепловой поток и увеличить сопротивление теплопередаче воздушной прослойки, рекомендуют использовать отражательную изоляцию, то есть покрытие одной или обеих поверхностей, например, алюминиевой фольгой (так называемое «армирование»). Такое покрытие обычно устраивают на теплой поверхности, чтобы избежать конденсации влаги, ухудшающей отражательные свойства фольги. «Армирование» поверхности уменьшает лучистый поток примерно в 10 раз.

Рекомендуется располагать воздушные прослойки ближе к наружной стороне ограждения, так как при этом понижается температура, а значит, θ и αл .

Термическое сопротивление герметичной воздушной прослойки при постоянной разности температур на ее поверхностях определяется по формуле

. (3.24)

Термическое сопротивление замкнутых воздушных прослоек

Значения Ral для замкнутых плоских воздушных прослоек приведены в таблице 3.6. К ним можно отнести, например, прослойки между слоями из плотного бетона, который практически не пропускает воздух. Экспериментально показано, что в кирпичной кладке при недостаточном заполнении швов между кирпичами раствором имеет место нарушение герметичности, то есть проникновение наружного воздуха в прослойку и резкое снижение ее сопротивления теплопередаче.

Согласно СП 23-101-2004 рекомендуется применять невентилируемые воздушные прослойки в стенах — толщиной не менее 40 мм (при устройстве отражательной теплоизоляции – 10 мм).

При покрытии одной или обеих поверхностей прослойки алюминиевой фольгой ее термическое сопротивление следует увеличивать в два раза.

В настоящее время широкое распространение получили стены с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом). Навесной вентилируемый фасад – это конструкция, состоящая из материалов облицовки и подоблицовочной конструкции, которая крепится к стене таким образом, чтобы между защитно-декоративной облицовкой и стеной оставался воздушный промежуток. Для дополнительного утепления наружных конструкций между стеной и облицовкой устанавливается теплоизоляционный слой, так что вентиляционный зазор оставляется между облицовкой и теплоизоляцией.

Схема конструкции вентилируемого фасада показана на рис.3.15. Согласно СП 23-101 толщина воздушной прослойки должна быть в пределах от 60 до 150 мм.

Слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются. Следовательно, термическое сопротивление наружной облицовки не входит в сопротивление теплопередаче стены, определяемое по формуле (3.6). Как отмечалось в п.2.5, коэффициент теплоотдачи наружной поверхности ограждающей конструкции с вентилируемыми воздушными прослойками αext для холодного периода составляет 10,8 Вт/(м 2 · ºС).

Конструкция вентилируемого фасада обладает рядом существенных преимуществ. В п.3.2 сравнивались распределения температур в холодный период в двухслойных стенах с внутренним и наружным расположением утеплителя (рис.3.4). Стена с наружным утеплением является более

«теплой», так как основной перепад температур происходит в теплоизоляционном слое. Не происходит образования конденсата внутри стены, не ухудшаются ее теплозащитные свойства, не требуется дополнительной пароизоляции (глава 5).

Воздушный поток, возникающей в прослойке из-за перепада давления, способствует испарению влаги с поверхности утеплителя. Следует отметить, что значительной ошибкой является применение пароизоляции на наружной поверхности теплоизоляционного слоя, так как она препятствует свободному отводу водяного пара наружу.

Проектирование бань | Totalarch

Вы здесь

Теплоизолирующая способность воздушных прослоек

Зазоры, доступные потокам воздуха, являются продухами, ухудшающими теплоизоляционные характеристики стен. Зазоры же замкнутые (так же как закрытые поры вспененного материала) являются теплоизолирующими элементами. Ветронепродуваемые пустоты широко применяются в строительстве для снижения теплопотерь через ограждающие конструкции (щели в кирпичах и блоках, каналы в бетонных панелях, зазоры в стеклопакетах и т. п.). Пустоты в виде непродуваемых воздушных прослоек используются и в стенах бань, в том числе каркасных. Эти пустоты зачастую являются основными элементами теплозащиты. В частности, именно наличие пустот с горячей стороны стены позволяет использовать легкоплавкие пенопласты (пенополистирол и пенополиэтилен) в глубинных зонах стен высокотемпературных бань.

В то же время пустоты в стенах являются самыми коварными элементами. Стоит в малейшей степени нарушить ветроизоляцию, и вся система пустот может стать единым продуваемым выхолаживающим продухом, выключающим из системы теплоизоляции стен все внешние теплоизоляционные слои. Поэтому пустоты стараются делать небольшими по размеру и гарантированно изолируют друг от друга.

Использовать понятие теплопроводности воздуха (а тем более использовать ультранизкое значение коэффициента теплопроводности неподвижного воздуха 0,024 Вт/м град) для оценки процессов теплопередачи через реальный воздух невозможно, поскольку воздух в крупных пустотах является крайне подвижной субстанцией. Поэтому на практике для теплотехнических расчётов процессов передачи тепла даже через условно «неподвижный» воздух применяют эмпирические (опытные, экспериментальные) соотношения. Чаще всего (в простейших случаях) в теории теплопередачи считается, что тепловой поток из воздуха на поверхность тела в воздухе равен Q = α∆Т, где α — эмпирический коэффициент теплопередачи «неподвижного» воздуха, ∆Т — разность температур поверхности тела и воздуха. В обычных условиях жилых помещений коэффициент теплопередачи равен ориентировочно α = 10 Вт/м² град. Именно этой цифры мы будем придерживаться при оценочных расчётах прогрева стен и тела человека в бане. При помощи потоков воздуха со скоростью V (м/сек), тепловой поток увеличивается на величину конвективной составляющей Q=βV∆T, где β примерно равен 6 Вт•сек/м³•град. Все величины зависят от пространственной ориентации и шероховатости поверхности. Так, по действующим нормам СНиП 23-02-2003 коэффициент теплопередачи от воздуха к внутренним поверхностям ограждающих конструкций принимается равным 8,7 Вт/м² град для стен и гладких потолков со слабо выступающими рёбрами (при отношении высоты рёбер «h» к расстоянию «а» между гранями соседних рёбер h/a 0,3); 8,0 Вт/м² град для окон и 9,9 Вт/м² град для зенитных фонарей. Финские специалисты принимают коэффициент теплопередачи в «неподвижном» воздухе сухих саун равным 8 Вт/м² град (что в пределах ошибок измерений совпадает с принимаемым нами значением) и 23 Вт/м² град при наличии потоков воздуха со скоростью в среднем 2 м/сек.

Столь малое значение коэффициента теплопередачи в условно «неподвижном» воздухе α = 10 Вт/м² град соответствует понятию воздуха как теплоизолятора и объясняет необходимость использования высоких температур в саунах для быстрого согрева тела человека. Применительно же к стенам это означает, что при характерных теплопотерях через стены бани (50- 200) Вт/м² разница температур воздуха в бане и температур внутренних поверхностей стен бани может достигать (5-20)°С. Это очень большая величина, часто никак и никем не учитывающаяся. Наличие в бане сильной конвекции воздуха позволяет снизить перепад температуры вдвое. Отметим, что столь высокие перепады температур, характерные для бань, недопустимы в жилых помещениях. Так, нормируемый в СНиП 23-02-2003 температурный перепад между воздухом и стенами не должен превышать 4°С в жилых помещениях, 4,5°С в общественных и 12°С в производственных. Более высокие перепады температур в жилых помещениях неминуемо приводят к ощущениям холода от стен и выпадению росы на стенах.

Читать еще:  Как рассчитать количество кафеля для ванной самостоятельно

Термическое сопротивление воздушной прослойки.

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек, расположенных между слоями ограждающей конструкции, называют термическим сопротивлением Rв.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.


Рис.5. Теплообмен в воздушной прослойке.

Тепловой поток, проходящий через воздушную прослойку qв.п, Вт/м², складывается из потоков, передаваемых теплопроводностью (2) qт, Вт/м², конвекцией (1) qк, Вт/м², и излучением (3) qл, Вт/м².

24. Условное и приведенное сопротивление теплопередаче. Каоффицент теплотехнической однородности ограждающих конструкций.

25. Нормирование сопротивления теплопередаче исходя из санитарно-гигиенич.условий

, R= *

Нормируем Δ t н , тогда R тр = * , т.е. для того, чтобы Δ t≤ Δ t н Необходимо

СНиП распространяет это требование на приведенное сопротивл. теплопередаче.

tв— расчетная температура внутреннего воздуха, °С;

приним. по нормам для проектир. здания

tн— — расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92

Aв(альфа)- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, принимаемый по СНиП

Δt н — нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимаемых по CНиП

Требуемое сопротивление теплопередаче R тр о дверей и ворот должно быть не менее 0,6R тр о стен зданий и сооружений, определяемого по формуле (1) при расчетной зимней температуре наружного воздуха, равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92.

При определении требуемого сопротивления теплопередаче внутренних ограждаюших конструкций в формуле (1) следует принимать вместо tн -расчетную температуру воздуха более холодного помещения.

26. Теплотехнический расчет необходимой толщины материала ограждения исходя из условий достижения требуемого сопротивления теплопередаче.

27. Влажность материала. Причины увлажнения конструкции

Влажность –физическая величина равная кол-ву воды, содержащейся в порах материала.

Бывает по массе и объемная

1)Строительная влага. (при возведении здания). Зависит от конструкции и способа возведения работ. Сплошная кирпичная кладка хуже керамических блоков. Наиболее благоприятна древесина(сборные стены). ж/б не всегда. Должна исчезнуть за 2=-3 года эксплуатации.Меры: просушка стен

Грунтовая влага. (капиллярное всасывание). Доходит до уровня 2-2,5 м. водоизолирующие слои, при правильном устройстве не влияет.

2)Грунтовая влага,проникает в ограждение из грунта вследствие капиллярного всасывания

3)Атмосферная влага. (косой дождь,снег). Особенно важно у крыш и карнизов.. сплошные кирпичные стены не требуют защиты при правильно сделанной расшивке.ж/б , легкобетонные панели внимание на стыки и оконные блоки, фактурный слой из водонепроницаемых материалов. Защита=защитная стенка на откосе

4)Эксплуатационная влага. (в цехах промышленных зданий, в основном в полах и ниж части стен)решение: водонепроницаемые полы, устройство водоотвода, облицовка нижней части керамической плиткой, водонепроницаемая штукатурка. Защита=защитная облицовка с внутр. стороны

5)Гигроскопическая влага. Обусловлена повышенной гигроскопичностью мат.-лов(свойство поглощать водяные пары из влажн.воздуха)

6)Конденсация влаги из воздуха:а)на поверхность ограждения.б)в толще ограждения

28. Влияние влажности на свойства конструкций

1)С повышением влажности повышается теплопроводность конструкции.

2)Влажностные деформации. Влажность гораздо хуже, чем тепловое расширение. Отслаивание штукатурки в рез-те скопившейся влаги под ней, затем влага замерзает, расширяется в объеме и отрывает штукатурку. Невлагостойкие мат-лы при увлажнении деформируются. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание.

3)Снижение долговечности-кол-ва лет безотказной работы конструкции

4)Биологические повреждения (грибок, плесень)из-за выпадения росы

5)Потеря эстетического вида

Следовательно при выборе материалов учитывают их влажностный режим и выбирают материалы с наим влажностью. Также чрезмерная влажность в помещении может вызвать распространение заболеваний и инфекций.

С технической точки зрения, приводит к потерям долговечности и конструкции и ее морозостойких св-в. Некоторые материалы при повышенной влажности теряют механическую прочность, меняют форму. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание. Коррозия металла. ухудшение внешнего вида.

29. Сорбция водяного пара строит. матер. Механизмы сорбции. Гистерезис сорбции.

Сорбция — процесс поглощения водяного пара, который приводит к равновесному влажностному состоянию материала с воздухом. 2 явления. 1. Поглощение в результате соударения молекулы пар с поверхностью пор и прилипание к этой поверхности(адсорбция)2. Прямое растворение влаги в объеме тела(абсорбция). Влажность увеличивается с увеличением относительной упругости и понижением температуры. «десорбция» если влаж.образец поместить в эксикаторы (раствор серной кислоты), то он отдает влагу.

Механизмы сорбции:

3.Объемное заполнение микропор

4.Заполнение межслоевого пространства

1 стадия. Адсорбция-это явление, при котором поверхность пор покрывается одним или несколькими слоями молекул воды.(в мезопорах и макропорах).

2 стадия. Полимолекулярная адсорбция — образуется многослойный адсорбированный слой.

3 стадия. Капиллярная конденсация.

ПРИЧИНА. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской поверхностью жидкости. В капиллярах малого радиуса влага образует вогнутые миниски, поэтому появляется возможность капиллярной конденсации. Если D>2*10 -5 см, то капиллярной конденсации не будет.

Десорбция –процесс естественного высушивания материала.

Гистерезис («различие») сорбции заключается в различии изотермы сорбции, полученной при увлажнении материала от изотермы десорбции, полученной от высушенного материала. показывает % разницу между весовой влажностью при сорбции и вес влажностью десорбции (десорбция 4.3%,сорбция 2,1%, гистерезис 2,2%)при увлажнении изотермы сорбции. При высыхании десорбции.

30. Механизмы влагопереноса в материалах стройконструкций. Паропроницаемость, капиллярное всасыванье воды.

1.В зимнее время из-за разности температур и при разных парциальных давлениях через ограждение проходит поток водяного пара (от внутренней поверхности к наружной)-диффузия водяного пара. Летом наоборот.

2. Конвективный перенос водяного пара (с потоком воздуха)

3. Капилярный перенос воды (просачивание) сквозь пористые матер.

4. Гравитационный протечки воды сквозь трещины, отверстия, макропоры.

Паропроницаемость –сво-во материала или конструкции, выполненой из них, пропускать сквозь себя водяной пар.

Коэф.поропроницаемости — Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич.

Сопротивление паропроницанию: R=толщина/мю

Мю -коэф паропроницаемости (определяется по СНИПу 2379 теплотехника)

Капиллярное всасывание воды стройматериалами –обеспечивает постоянный перенос жидкой влаги сквозь пористые материалы из области с высокой концентрацией в область с низкой концентрацией.

Чем тоньше капилляры, тем больше сила капилярного всасывания, но в целом скорость переноса уменьшается.

Капилярный перенос может быть уменьшен или устранен путем устройства соответствующего барьера (небольш. воздушные прослойка или капилярно-неактивный слой(непористый)).

31. Закон Фика. Коэффициент паропроницаемости

P(количество пара, г) = (eв-eн)F*z*(мю/толщину),

Мю – коэф. паропроницаемости (определяется по СНИПу 2379 теплотехника)

Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.[мг/(м 2 *Па)].Наименьшее мю имеет руберойд 0.00018, наибольшее мин.вата=0,065г/м*ч*мм.рт.ст., оконное стекло и металлы паронепроницаемы, воздух наибольшая паропрониц-ть. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич. Зависит от физич свойства материала и отражает его способность проводить диффундирующий через него водяной пар. Анизотропные материалы имеют разные мю(у дерева вдоль волокон=0,32,поперек=0,6).

Эквивалентное сопротивление паропроницанию ограждения при последовательном расположении слоев. Закон Фика.

32 Расчет распределения парциального давления водяного пара по толщине конструкции.

Ограждения с воздушными прослойками

Одним из приемов, повышающих теплоизоляционные качества ограждений, является устройство воздушной прослойки. Ее используют в конструкциях наружных стен, перекрытий, окон, витражей. В стенах и перекрытиях ее применяют и для предупреждения переувлажнения конструкций.

Воздушная прослойка может быть герметичной или вентилируемой.

Рассмотрим теплопередачу герметичной воздушной прослойки.

Термическое сопротивление воздушной прослойки Ral нельзя определять как сопротивление теплопроводности слоя воздуха, так как перенос тепла через прослойку при разности температур на поверхностях происходит, в основном, путем конвекции и излучения (рис.3.14). Количество тепла,

передаваемого путем теплопроводности, мало, так как мал коэффициент теплопроводности воздуха (0,026 Вт/(м·ºС)).

В прослойках, в общем случае, воздух находится в движении. В вертикальных — он перемещается вверх вдоль теплой поверхности и вниз – вдоль холодной. Имеет место конвективный теплообмен, и его интенсивность возрастает с увеличением толщины прослойки, поскольку уменьшается трение воздушных струй о стенки. При передаче тепла конвекцией преодолевается сопротивление пограничных слоев воздуха у двух поверхностей, поэтому для расчета этого количества тепла коэффициент теплоотдачи αк следует уменьшить вдвое.

Читать еще:  Варианты ванной комнаты с душем

Для описания теплопереноса совместно конвекцией и теплопроводностью обычно вводят коэффициент конвективного теплообмена α’к, равный

где λa и δal – коэффициент теплопроводности воздуха и толщина воздушной прослойки, соответственно.

Этот коэффициент зависит от геометрической формы и размеров воздушных прослоек, направления потока тепла. Путем обобщения большого количества экспериментальных данных на основе теории подобия М.А.Михеев установил определенные закономерности для α’к . В таблице 3.5 в качестве примера приведены значения коэффициентов α’к , рассчитанные им при средней температуре воздуха в вертикальной прослойке t = + 10º С.

Коэффициенты конвективного теплообмена в вертикальной воздушной прослойке

Коэффициент конвективного теплообмена в горизонтальных воздушных прослойках зависит от направления теплового потока. Если верхняя поверхность нагрета больше, чем нижняя, движения воздуха почти не будет, так как теплый воздух сосредоточен вверху, а холодный – внизу. Поэтому достаточно точно будет выполняться равенство

Следовательно, конвективный теплообмен существенно уменьшается, а термическое сопротивление прослойки увеличивается. Горизонтальные воздушные прослойки эффективны, например, при их использовании в утепленных цокольных перекрытиях над холодными подпольями, где тепловой поток направлен сверху вниз.

Если поток тепла направлен снизу вверх, то возникают восходящие и нисходящие потоки воздуха. Передача тепла конвекцией играет существенную роль, и значение α’к возрастает.

Для учета действия теплового излучения вводится коэффициент лучистого теплообмена αл (Глава 2, п.2.5).

Пользуясь формулами (2.13), (2.17), (2.18) определим коэффициент теплообмена излучением αл в воздушной прослойке между конструктивными слоями кирпичной кладки. Температуры поверхностей: t1 = + 15 ºС, t2 = + 5 ºС; степень черноты кирпича: ε1= ε2= 0,9.

По формуле (2.13) найдем, что ε = 0,82. Температурный коэффициент θ = 0,91. Тогда αл = 0,82∙5,7∙0,91 = 4,25 Вт/(м 2 ·ºС).

Величина αл намного больше α’к (см табл.3.5), следовательно, основное количество тепла через прослойку переносится излучением. Для того, чтобы уменьшить этот тепловой поток и увеличить сопротивление теплопередаче воздушной прослойки, рекомендуют использовать отражательную изоляцию, то есть покрытие одной или обеих поверхностей, например, алюминиевой фольгой (так называемое «армирование»). Такое покрытие обычно устраивают на теплой поверхности, чтобы избежать конденсации влаги, ухудшающей отражательные свойства фольги. «Армирование» поверхности уменьшает лучистый поток примерно в 10 раз.

Рекомендуется располагать воздушные прослойки ближе к наружной стороне ограждения, так как при этом понижается температура, а значит, θ и αл .

Термическое сопротивление герметичной воздушной прослойки при постоянной разности температур на ее поверхностях определяется по формуле

. (3.24)

Термическое сопротивление замкнутых воздушных прослоек

Значения Ral для замкнутых плоских воздушных прослоек приведены в таблице 3.6. К ним можно отнести, например, прослойки между слоями из плотного бетона, который практически не пропускает воздух. Экспериментально показано, что в кирпичной кладке при недостаточном заполнении швов между кирпичами раствором имеет место нарушение герметичности, то есть проникновение наружного воздуха в прослойку и резкое снижение ее сопротивления теплопередаче.

Согласно СП 23-101-2004 рекомендуется применять невентилируемые воздушные прослойки в стенах — толщиной не менее 40 мм (при устройстве отражательной теплоизоляции – 10 мм).

При покрытии одной или обеих поверхностей прослойки алюминиевой фольгой ее термическое сопротивление следует увеличивать в два раза.

В настоящее время широкое распространение получили стены с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом). Навесной вентилируемый фасад – это конструкция, состоящая из материалов облицовки и подоблицовочной конструкции, которая крепится к стене таким образом, чтобы между защитно-декоративной облицовкой и стеной оставался воздушный промежуток. Для дополнительного утепления наружных конструкций между стеной и облицовкой устанавливается теплоизоляционный слой, так что вентиляционный зазор оставляется между облицовкой и теплоизоляцией.

Схема конструкции вентилируемого фасада показана на рис.3.15. Согласно СП 23-101 толщина воздушной прослойки должна быть в пределах от 60 до 150 мм.

Слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются. Следовательно, термическое сопротивление наружной облицовки не входит в сопротивление теплопередаче стены, определяемое по формуле (3.6). Как отмечалось в п.2.5, коэффициент теплоотдачи наружной поверхности ограждающей конструкции с вентилируемыми воздушными прослойками αext для холодного периода составляет 10,8 Вт/(м 2 · ºС).

Конструкция вентилируемого фасада обладает рядом существенных преимуществ. В п.3.2 сравнивались распределения температур в холодный период в двухслойных стенах с внутренним и наружным расположением утеплителя (рис.3.4). Стена с наружным утеплением является более

«теплой», так как основной перепад температур происходит в теплоизоляционном слое. Не происходит образования конденсата внутри стены, не ухудшаются ее теплозащитные свойства, не требуется дополнительной пароизоляции (глава 5).

Воздушный поток, возникающей в прослойке из-за перепада давления, способствует испарению влаги с поверхности утеплителя. Следует отметить, что значительной ошибкой является применение пароизоляции на наружной поверхности теплоизоляционного слоя, так как она препятствует свободному отводу водяного пара наружу.

РУП «Белстройцентр»

Системы теплоизоляции зданий с воздушной прослойкой

В статье рассматривается конструкция теплоизоляционной системы с замкнутой воздушной прослойкой между теплоизоляцией и стеной здания. Предлагается использовать паропроницаемые вставки в теплоизоляции с целью предотвращения конденсации влаги в прослойке воздуха. Приводится метод расчета площади вставок в зависимости от условий использования теплоизоляции.

This paper describes the thermal insulating system having dead air space between the thermal insulation and the outer wall of the building. Water vapour-permeable inserts are proposed for use in the thermal insulation in order to prevent moisture condensation in the air space. The method for calculating the area of the inserts has been offered depending on the conditions of the thermal insulation usage.

ВВЕДЕНИЕ

Воздушная прослойка является элементом многих ограждающих конструкций зданий. В работе [1] исследованы свойства ограждающих конструкций с замкнутой и вентилируемой воздушными прослойками. В то же время особенности ее применения во многих случаях требуют решения задач строительной теплотехники в конкретных условиях использования.

Известна и широко используется в строительстве конструкция теплоизоляционной системы с вентилируемой воздушной прослойкой [2]. Основное преимущество этой системы перед легкими штукатурными системами — возможность выполнения работ по утеплению зданий круглый год. К ограждающей конструкции вначале прикрепляется система крепежа утеплителя. Утеплитель прикрепляется к этой системе. Наружная защита утеплителя устанавливается от него на некотором расстоянии, так что между утеплителем и наружным ограждением образуется воздушная прослойка. Конструкция системы утепления позволяет осуществлять вентиляцию воздушной прослойки с целью удаления излишков влаги, что обеспечивает снижение количества влаги в утеплителе. К недостаткам этой системы можно отнести сложность и необходимость наряду с использованием утеплительных материалов применять сайдинговые системы, обеспечивающие необходимый зазор для движущегося воздуха.

Известна система вентиляции, в которой воздушная прослойка примыкает непосредственно к стене здания [3, 4]. Теплоизоляция выполнена в виде трехслойных панелей: внутренний слой – теплоизоляционный материал, наружные слои – алюминий и алюминиевая фольга. Такая конструкция защищает утеплитель от проникновения как атмосферной влаги, так и влаги из помещений. Поэтому его свойства не ухудшаются в любых условиях эксплуатации, что позволяет сэкономить до 20 % утеплителя по сравнению с обычными системами [5]. Недостатком указанных систем является необходимость проветривания прослойки для удаления влаги, мигрирующей из помещений здания [3, 4]. Это приводит к снижению теплоизоляционных свойств системы. К тому же, тепловые потери нижних этажей зданий увеличиваются, так как холодному воздуху, поступающему в прослойку через отверстия внизу системы, требуется некоторое время для нагрева до установившейся температуры.

Авторы предлагают рассмотреть системы утепления с воздушными прослойками, свободные от указанных недостатков.

СИСТЕМА УТЕПЛЕНИЯ С ЗАМКНУТОЙ ВОЗДУШНОЙ ПРОСЛОЙКОЙ

Возможна система теплоизоляции, аналогичная [3, 4], с замкнутой воздушной прослойкой. Следует обратить внимание на тот факт, что движение воздуха в прослойке необходимо только для удаления влаги. Если решить задачу удаления влаги другим способом, без проветривания, получим систему теплоизоляции с замкнутой воздушной прослойкой без указанных выше недостатков.

Для решения поставленной задачи система теплоизоляции должна иметь вид, представленный на рис. 1. Теплоизоляцию здания следует выполнить с паропроницаемыми вставками из теплоизоляционного материала, например, минеральной ваты. Систему теплоизоляции необходимо устроить таким образом, чтобы обеспечивалось удаление пара из прослойки, а внутри нее влажность была ниже точки росы в прослойке.

1 – стена здания; 2 – крепежные элементы; 3 – теплоизоляционные панели; 4 – паротеплоизоляционные вставки

Читать еще:  Установка унитаза еко своими руками

Рис. 1. Теплоизоляция с паропроницаемыми вставками

Для давления насыщенного пара в прослойке можно записать выражение [4]:

(1)

Пренебрегая термическим сопротивлением воздуха в прослойке, среднюю температуру внутри прослойки определим по формуле

(2)

где Tin, Tout – температура воздуха внутри здания и наружного воздуха соответственно, о С;

R1, R2 – сопротивление теплопередаче стены и теплоизоляции соответственно, м 2 × о С/Вт.

Для пара, мигрирующего из помещения через стену здания, можно записать уравнение:

(3)

где Pin, P – парциальное давление пара в помещении и прослойке, Па;

S1 – площадь наружной стены здания, м 2 ;

kпп1 – коэффициент паропроницаемости стены, равный:

(4)

m 1 – коэффициент паропроницаемости материала стены, мг/(м×ч×Па);

Для пара, мигрирующего из воздушной прослойки через паропроницаемые вставки в теплоизоляции здания, можно записать уравнение:

(5)

где Pout – парциальное давление пара в наружном воздухе, Па;

S2 – площадь паропроницаемых теплоизоляционных вставок в теплоизоляции здания, м 2 ;

kпп2 – коэффициент паропроницаемости вставок, равный:

(6)

m 2 – коэффициент паропроницаемости материала паропроницаемой вставки, мг/(м×ч×Па);

Приравняв правые части уравнений (3) и (5) и решив полученное уравнение для баланса пара в прослойке относительно P, получим значение давления пара в прослойке в виде:

(7)

Записав условие отсутствия конденсации влаги в воздушной прослойке в виде неравенства:

(8)

и решив его, получим требуемое значение отношения суммарной площади паропроницаемых вставок к площади стены:

(9)

В таблице 1 приведены полученные данные для некоторых вариантов ограждающих конструкций. В расчетах предполагалось, что коэффициент теплопроводности паропроницаемой вставки равен коэффициенту теплопроводности основной теплоизоляции в системе.

Термическое сопротивление воздушной прослойки.

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек, расположенных между слоями ограждающей конструкции, называют термическим сопротивлением Rв.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.


Рис.5. Теплообмен в воздушной прослойке.

Тепловой поток, проходящий через воздушную прослойку qв.п, Вт/м², складывается из потоков, передаваемых теплопроводностью (2) qт, Вт/м², конвекцией (1) qк, Вт/м², и излучением (3) qл, Вт/м².

24. Условное и приведенное сопротивление теплопередаче. Каоффицент теплотехнической однородности ограждающих конструкций.

25. Нормирование сопротивления теплопередаче исходя из санитарно-гигиенич.условий

, R= *

Нормируем Δ t н , тогда R тр = * , т.е. для того, чтобы Δ t≤ Δ t н Необходимо

СНиП распространяет это требование на приведенное сопротивл. теплопередаче.

tв— расчетная температура внутреннего воздуха, °С;

приним. по нормам для проектир. здания

tн— — расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92

Aв(альфа)- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, принимаемый по СНиП

Δt н — нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимаемых по CНиП

Требуемое сопротивление теплопередаче R тр о дверей и ворот должно быть не менее 0,6R тр о стен зданий и сооружений, определяемого по формуле (1) при расчетной зимней температуре наружного воздуха, равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92.

При определении требуемого сопротивления теплопередаче внутренних ограждаюших конструкций в формуле (1) следует принимать вместо tн -расчетную температуру воздуха более холодного помещения.

26. Теплотехнический расчет необходимой толщины материала ограждения исходя из условий достижения требуемого сопротивления теплопередаче.

27. Влажность материала. Причины увлажнения конструкции

Влажность –физическая величина равная кол-ву воды, содержащейся в порах материала.

Бывает по массе и объемная

1)Строительная влага. (при возведении здания). Зависит от конструкции и способа возведения работ. Сплошная кирпичная кладка хуже керамических блоков. Наиболее благоприятна древесина(сборные стены). ж/б не всегда. Должна исчезнуть за 2=-3 года эксплуатации.Меры: просушка стен

Грунтовая влага. (капиллярное всасывание). Доходит до уровня 2-2,5 м. водоизолирующие слои, при правильном устройстве не влияет.

2)Грунтовая влага,проникает в ограждение из грунта вследствие капиллярного всасывания

3)Атмосферная влага. (косой дождь,снег). Особенно важно у крыш и карнизов.. сплошные кирпичные стены не требуют защиты при правильно сделанной расшивке.ж/б , легкобетонные панели внимание на стыки и оконные блоки, фактурный слой из водонепроницаемых материалов. Защита=защитная стенка на откосе

4)Эксплуатационная влага. (в цехах промышленных зданий, в основном в полах и ниж части стен)решение: водонепроницаемые полы, устройство водоотвода, облицовка нижней части керамической плиткой, водонепроницаемая штукатурка. Защита=защитная облицовка с внутр. стороны

5)Гигроскопическая влага. Обусловлена повышенной гигроскопичностью мат.-лов(свойство поглощать водяные пары из влажн.воздуха)

6)Конденсация влаги из воздуха:а)на поверхность ограждения.б)в толще ограждения

28. Влияние влажности на свойства конструкций

1)С повышением влажности повышается теплопроводность конструкции.

2)Влажностные деформации. Влажность гораздо хуже, чем тепловое расширение. Отслаивание штукатурки в рез-те скопившейся влаги под ней, затем влага замерзает, расширяется в объеме и отрывает штукатурку. Невлагостойкие мат-лы при увлажнении деформируются. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание.

3)Снижение долговечности-кол-ва лет безотказной работы конструкции

4)Биологические повреждения (грибок, плесень)из-за выпадения росы

5)Потеря эстетического вида

Следовательно при выборе материалов учитывают их влажностный режим и выбирают материалы с наим влажностью. Также чрезмерная влажность в помещении может вызвать распространение заболеваний и инфекций.

С технической точки зрения, приводит к потерям долговечности и конструкции и ее морозостойких св-в. Некоторые материалы при повышенной влажности теряют механическую прочность, меняют форму. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание. Коррозия металла. ухудшение внешнего вида.

29. Сорбция водяного пара строит. матер. Механизмы сорбции. Гистерезис сорбции.

Сорбция — процесс поглощения водяного пара, который приводит к равновесному влажностному состоянию материала с воздухом. 2 явления. 1. Поглощение в результате соударения молекулы пар с поверхностью пор и прилипание к этой поверхности(адсорбция)2. Прямое растворение влаги в объеме тела(абсорбция). Влажность увеличивается с увеличением относительной упругости и понижением температуры. «десорбция» если влаж.образец поместить в эксикаторы (раствор серной кислоты), то он отдает влагу.

Механизмы сорбции:

3.Объемное заполнение микропор

4.Заполнение межслоевого пространства

1 стадия. Адсорбция-это явление, при котором поверхность пор покрывается одним или несколькими слоями молекул воды.(в мезопорах и макропорах).

2 стадия. Полимолекулярная адсорбция — образуется многослойный адсорбированный слой.

3 стадия. Капиллярная конденсация.

ПРИЧИНА. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской поверхностью жидкости. В капиллярах малого радиуса влага образует вогнутые миниски, поэтому появляется возможность капиллярной конденсации. Если D>2*10 -5 см, то капиллярной конденсации не будет.

Десорбция –процесс естественного высушивания материала.

Гистерезис («различие») сорбции заключается в различии изотермы сорбции, полученной при увлажнении материала от изотермы десорбции, полученной от высушенного материала. показывает % разницу между весовой влажностью при сорбции и вес влажностью десорбции (десорбция 4.3%,сорбция 2,1%, гистерезис 2,2%)при увлажнении изотермы сорбции. При высыхании десорбции.

30. Механизмы влагопереноса в материалах стройконструкций. Паропроницаемость, капиллярное всасыванье воды.

1.В зимнее время из-за разности температур и при разных парциальных давлениях через ограждение проходит поток водяного пара (от внутренней поверхности к наружной)-диффузия водяного пара. Летом наоборот.

2. Конвективный перенос водяного пара (с потоком воздуха)

3. Капилярный перенос воды (просачивание) сквозь пористые матер.

4. Гравитационный протечки воды сквозь трещины, отверстия, макропоры.

Паропроницаемость –сво-во материала или конструкции, выполненой из них, пропускать сквозь себя водяной пар.

Коэф.поропроницаемости — Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич.

Сопротивление паропроницанию: R=толщина/мю

Мю -коэф паропроницаемости (определяется по СНИПу 2379 теплотехника)

Капиллярное всасывание воды стройматериалами –обеспечивает постоянный перенос жидкой влаги сквозь пористые материалы из области с высокой концентрацией в область с низкой концентрацией.

Чем тоньше капилляры, тем больше сила капилярного всасывания, но в целом скорость переноса уменьшается.

Капилярный перенос может быть уменьшен или устранен путем устройства соответствующего барьера (небольш. воздушные прослойка или капилярно-неактивный слой(непористый)).

31. Закон Фика. Коэффициент паропроницаемости

P(количество пара, г) = (eв-eн)F*z*(мю/толщину),

Мю – коэф. паропроницаемости (определяется по СНИПу 2379 теплотехника)

Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.[мг/(м 2 *Па)].Наименьшее мю имеет руберойд 0.00018, наибольшее мин.вата=0,065г/м*ч*мм.рт.ст., оконное стекло и металлы паронепроницаемы, воздух наибольшая паропрониц-ть. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич. Зависит от физич свойства материала и отражает его способность проводить диффундирующий через него водяной пар. Анизотропные материалы имеют разные мю(у дерева вдоль волокон=0,32,поперек=0,6).

Эквивалентное сопротивление паропроницанию ограждения при последовательном расположении слоев. Закон Фика.

32 Расчет распределения парциального давления водяного пара по толщине конструкции.

Ссылка на основную публикацию
Adblock
detector