2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы сжигания природного газа

Способ сжигания природного газа и устройство для его осуществления

Владельцы патента RU 2473012:

Изобретение относится к теплоэнергетике и может применяться в промышленности и других отраслях народного хозяйства, использующих природный газ в качестве энергоносителя. Устройство для сжигания природного газа содержит корпус с газораздающими отверстиями, перпендикулярными набегающему потоку воздуха, расположенными на расстоянии S друг от друга, и углублениями-стабилизаторами факела. Корпус состоит из верхней и нижней частей, разделенных прямоугольным сквозным каналом, в верхней и нижней частях корпуса по ходу воздуха размещены дополнительные профилированные воздушные рециркуляционные углубления, газораздающие отверстия и дополнительные профилированные стабилизационно-рециркуляционные углубления в верхней части корпуса, газораздающие отверстия в верхней и нижней частях корпуса выполнены соосно, с последовательным чередованием в направлении, перпендикулярном оси корпуса, в верхней части корпуса отношения их больших и меньших диаметров d1/d2=2/l, 1/2, 2/1, …, и, соответственно, d1/d2=1/2, 2/1, 1/2, …, в его нижней части, при возможном минимальном S=4d2 или максимальном S=10d2 расстояниях между осями соседних газораздающих отверстий. Изобретение позволяет повысить эффективность смесеобразования, с обеспечением полноты сгорания природного газа и экологичности газогорелочных устройств. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике.

Известен способ сжигания природного газа с подводом к горелочному устройству природного газа, воздуха, с их последующим смесеобразованием, зажиганием и стабилизацией факела. Смесеобразование и стабилизация производится за счет закрутки потока воздуха и рециркуляции высокотемпературных топочных газов. (Теория и практика сжигания газа. Т.6. Под ред. А.С.Иссерлина и М.И.Певзнера, Ленинград, Недра, Ленинградское отделение, 1975 г., с.10-18, 47-57, 79-83). Для этого способа характерны повышенное гидравлическое сопротивление и неравномерность температурного поля факела. Закрутка потока воздуха вызывает пульсационный режим горения.

Известен способ сжигания природного газа в набегающем потоке воздуха (51) 7 F23D 14/00, 14/62 (11) В1 005471 (13), согласно которому обеспечивают подачу воздуха, подачу природного газа через газораздающие отверстия перпендикулярно набегающему потоку воздуха, отношение расстояния между которыми к их диаметру составляет величину 2-5, смешивание воздуха и природного газа, поджигание смеси воздуха и природного газа, стабилизацию факела.

Предлагаемый способ сжигания природного газа обеспечивает повышенную полноту сгорания природного газа за счет первоначального равномерного распределения потока газа относительно потока воздуха с их последующим смешением, рециркуляцией и стабилизацией пламени.

По своей технической сущности этот способ и устройство для его осуществления наиболее близки к предлагаемому изобретению и приняты за прототип изобретения

Газогорелочное устройство, работающее по способу-прототипу, содержит корпус с центральным каналом, газораздающие отверстия диаметром d, расположенные на расстоянии S друг от друга, прямоугольные углубления-стабилизаторы для образования зоны обратных токов и стабилизации пламени.

Недостатком данного способа является недостаточно полное смесеобразование потоков природного газа и воздуха в газогорелочных устройствах.

Техническим результатом изобретения является повышение эффективности смесеобразования потоков природного газа и воздуха, повышение устойчивости горения в горелочных устройствах повышенной теплопроизводительности.

Технический результат решается за счет того, что в способе сжигания природного газа в набегающем потоке воздуха, включающем подачу воздуха, подачу природного газа через газораздающие отверстия газогорелочных устройств, перпендикулярно набегающему потоку воздуха, смешивание воздуха и природного газа, поджигание смеси воздуха и природного газа, стабилизацию горения, при этом потоки природного газа подают в верхнюю и нижнюю части набегающего воздушного потока через ряд встречных соосных газораздающих отверстий с чередующимися диаметрами; верхнюю и нижнюю части потока воздуха перед газораздающими отверстиями дополнительно турбулизируют с образованием обратных воздушных токов, стабилизацию горения осуществляют дополнительной рециркуляцией верхней части потока газовоздушной смеси.

Газогорелочное устройство, реализующее заявляемый способ, содержит корпус с газораздающими отверстиями, перпендикулярными набегающему потоку воздуха, расположенными на расстоянии S друг от друга, углублениями-стабилизаторами факела, при этом корпус состоит из верхней и нижней частей, разделенных прямоугольным сквозным каналом, в верхней и нижней частях корпуса по ходу воздуха размещены дополнительные профилированные воздушные рециркуляционные углубления, газораздающие отверстия и дополнительные профилированные стабилизационно-рециркуляционные углубления (стабилизаторы факела) в верхней части корпуса, газораздающие отверстия в верхней и нижней частях корпуса выполнены соосно, с последовательным чередованием в направлении, перпендикулярном оси корпуса, в верхней части корпуса отношения их больших и меньших диаметров d1/d2=2/1, 1/2, 2/1, …, и, соответственно, d1/d2=1/2, 2/1, 1/2, …, в его нижней части, при возможном минимальном S=4d2 или максимальном S=10d2 расстояниях между осями соседних газораздающих отверстий.

Совокупность признаков предлагаемого способа сжигания природного газа в набегающем потоке воздуха по сравнению со способом-прототипом позволяет:

— обеспечить однородное смесеобразование, дополнительно турбулизируя верхнюю и нижнюю части потока воздуха с образованием обратных воздушных потоков;

— увеличить полноту сгорания и повысить экологичность газогорелочных устройств за счет интенсивного смесеобразования потоков природного газа и воздуха;

— улучшить стабилизацию горения вследствие дополнительной рециркуляции верхней части потока газовоздушной смеси;

— повысить тепловую мощность газогорелочных устройств за счет возможности увеличения высоты прямоугольного сквозного канала их корпусов.

Преимущества способа определяются тем, что в отличие от способа-прототипа турбулизируют набегающий воздушный поток с образованием обратных потоков воздуха, подают в него встречные потоки природного газа через соосные газораздающие отверстия с чередующимися диаметрами, при расстояниях между осями соседних газораздающих отверстий — минимальном S=4d2 и максимальном S=10d2, стабилизацию горения осуществляют дополнительной рециркуляцией верхней части потока газовоздушной смеси.

На фиг.1 приведен разрез газогорелочного устройства, реализующего заявляемый способ, а на фиг.2 показано его изометрическое изображение.

Газогорелочное устройство, реализующее заявляемый способ, содержит корпус 1 с внутренним прямоугольным сквозным каналом 2, по ходу потока воздуха в верхней и нижней частях корпуса 1 размещены профилированные воздушные рециркуляционные углубления 3, газораздающие отверстия 4 и 5, профилированные стабилизационно-рециркуляционные углубления 6.

Газораздающие отверстия 4 в верхней части корпуса 1 и газораздающие отверстия 5 в его нижней части выполнены соосно, с последовательным чередованием в направлении, перпендикулярном оси корпуса 1, в верхней части корпуса 1 отношения больших и меньших диаметров газораздающих отверстий 4, равным d1/d2=2/1, 1/2, 2/1, …, и, соответственно, в его нижней части — отношения больших и меньших диаметров газораздающих отверстий 5, равным d1/d2=1/2, 2/1, 1/2, …, при возможном минимальном S=4d2 или максимальном S=10d2 расстояниях между осями соседних газораздающих отверстий.

Газогорелочное устройство работает следующим образом. Набегающий воздушный поток поступает во внутренний прямоугольный сквозной канал 2 корпуса 1 газогорелочного устройства. Верхняя и нижняя части потока воздуха поступают в профилированные воздушные рециркуляционные углубления 3 и турбулизируются в них с образованием обратных токов воздуха 7. Далее в поток этого воздуха через соосные газораздающие отверстия 4 и 5 в верхней части и нижней частях корпуса 1 подают природный газ, смешивают его с воздухом, образуя газовоздушную смесь 8. Диаметры d газораздающих отверстий 4 и 5 чередуются перпендикулярно оси корпуса 1, в его верхней части отношения больших и меньших диаметров изменяются в последовательности d1/d2=2/1, 1/2, 2/1, …, а в нижней части корпуса 1, соответственно, d1/d2=1/2, 2/1, 1/2, …. Газовоздушная смесь 8 воспламеняется с образованием пламени. Стабилизацию горения осуществляют за счет турбулизации газовоздушной смеси 8 с образованием обратных токов 9 в профилированных стабилизационно-рециркуляционных углублениях, 6 расположенных как в нижней, так и в верхней частях корпуса 1.

За счет обратных токов воздуха 7, подвода природного газа с двух противоположных сторон корпуса 1 через газораздающие отверстия 4 и 5, разных диаметров и обратных токов газовоздушной смеси 8 в выходной части корпуса 1 происходит интенсивное смесеобразование газа и воздуха с образованием практически однородного факела пламени на выходе из корпуса 1 газогорелочного устройства.

1. Способ сжигания природного газа, включающий подачу воздуха, подачу природного газа через газораздающие отверстия газогорелочных устройств перпендикулярно набегающему потоку воздуха, смешивание воздуха и природного газа, поджигание смеси воздуха и природного газа, стабилизацию факела, отличающийся тем, что потоки природного газа подают в верхнюю и нижнюю стороны набегающего воздушного потока через ряд встречных соосных газораздающих отверстий с чередующимися диаметрами.

2. Способ сжигания природного газа по п.1, отличающийся тем, что верхнюю и нижнюю части потока воздуха перед газораздающими отверстиями дополнительно турбулизируют с образованием обратных воздушных токов.

3. Способ сжигания природного газа по п.1, отличающийся тем, что стабилизацию горения осуществляют дополнительной рециркуляцией верхней части потока газовоздушной смеси.

4. Устройство для осуществления способа содержит корпус с газораздающими отверстиями, перпендикулярными набегающему потоку воздуха, расположенными на расстоянии S друг от друга, и углублениями-стабилизаторами факела, отличающееся тем, что корпус состоит из верхней и нижней частей, разделенных прямоугольным сквозным каналом, в верхней и нижней частях корпуса по ходу воздуха размещены дополнительные профилированные воздушные рециркуляционные углубления, газораздающие отверстия и дополнительные профилированные стабилизационно-рециркуляционные углубления в верхней части корпуса, газораздающие отверстия в верхней и нижней частях корпуса выполнены соосно, с последовательным чередованием в направлении, перпендикулярном оси корпуса, в верхней части корпуса отношения их больших и меньших диаметров d1/d2=2/1, 1/2, 2/1, …, и, соответственно, d1/d2=1/2, 2/1, 1/2, …, в его нижней части, при возможном минимальном S=4d2 или максимальном S=10d2 расстояниях между осями соседних газораздающих отверстий.

Читать еще:  Как промыть систему отопления

Методы сжигания природного газа

Методы сжигания природного газа

Все методы сжигания базируются на приготовлении газовоздушной смеси определенного состава.

I. диффузионный метод сжигания
Особенности. В корневой зоне никакого процесса горения нет. На границе корневой зоны молекулы кислорода успевают смешиваться и начинает газ гореть. В зоне основного горения выгорает углерод.
Этот процесс горения называется диффузионным, так как воздух сам приходит из атмосферы. Смешение молекул воздуха и газа происходит по газовым законам. Не будем углубляться в науку, а посмотрим процесс горения схематично, чтобы понять суть.
К фронту горения газ поступает под давлением, а необходимый для горения воздух из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения. Поэтому скорость горения равна скорости смесеобразования.
Важной характеристикой горения газообразного топлива является скорость распространения пламени в газовоздушной среды. Нормальная скорость это скорость распространения движения фронта пламени в направлении перпендикулярному направлению поверхности фронта пламени.

Рис.1 Горелка используяющая диффузионный метод сжигания газа

-Нормальная скорость метана равна 0,67 м/с;
-нормальная скорость пропана равна 0,82 м/с;
-нормальная скорость водорода 4,83 м/с.

Данные диффузионные горелки (для промышленных котлов) обладают следующими свойствами:
1. к струе газа диффундирует воздух, а из струи газа в воздух газ. Таким образом, в близи выхода газа из горелки создается газовоздушная смесь.
2. процесс горения начинается в зоне первично горения и заканчивается в основной зоне.
3. интенсивность процесса горения определяется скоростью образования газовоздушной смеси.
4. выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха.

В целом горение при таком методе образования газовоздушных смеси протекает достаточно медленно и пламя имеет большой объем и как правило обладает светимостью.

Достоинства горелок диффузионного типа
-Высокая устойчивость пламени при изменении тепловых нагрузок;
-невозможность проскока пламени в горелку, так как в горелке находится чистый газ;
-возможность регулирования горения в широком диапазоне.

Недостатки горелок диффузионного типа
-большой объем пламени снижает теплонапряженность в единице объема;
-вероятность термического распада метана на горючие составляющие;
-увеличивается опасность отрыва пламени от горелки.

II. Смешанный метод сжигания газа
Смешанный метод обеспечивается предварительным смешиванием газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды, непосредственно к факелу.
Сначала выгорает часть газа смешанного с первичным воздухом, а остальная часть, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается менее коротким и менее светящимся. Теплонапряженность в единице объема факела возрастает.

Рис. 2 Горелка использующая смешанный метод сжигания газа

III. Кинетический метод горения газа
К месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле и обладает малой светимостью.


Достоинства кинетического метода горения:
-малая вероятность химического недожога;
-высокая теплопроизводительность.

Недостаток. Необходимость стабилизации газового пламени. Это вызвано тем, что горелки чувствительны к изменению параметров давления газа и воздуха, что приводит к нарушению процесса горения. Для устранения данного недостатка горелки оснащаются стабилизаторами пламени.

Количество воздуха для сжигания природного газа: лучшие способы и пример расчета

От качества процесса горения зависит эффективность работы всевозможного газового оборудования. На что прямо влияет количество воздуха для сжигания природного газа, вычислить которое совсем несложно. Почему бы не позаботиться об эффективности расхода топлива и повышении КПД оборудования, выполнив необходимые расчеты самостоятельно, ведь верно?

Но как это правильно сделать и где взять данные для вычислений? Чтобы разобраться в этой теме, давайте рассмотрим в рамках нашей статьи теорию расхода воздуха на сжигание газа, познакомимся с наиболее простыми формулами для вычисления необходимого объема воздуха. А также поговорим о практической пользе этих вычислений.

Теория расхода воздуха на сжигание газа

Процедура получения тепловой энергии напрямую влияет на длительность эксплуатации, периодичность работ по обслуживанию газоиспользующего оборудования. Следует понимать, что оптимальная газовоздушная смесь является залогом безопасности. Поговорим детальнее о расходе воздуха на сжигание газа.

Для сгорания одной молекулы метана, который является основной составляющей природного газа, требуется ровно 2 молекулы кислорода. Если перевести в понятные объемы, то для того, чтобы окислить кубический метр указанного топлива придется использовать в 2 раза больше кислорода.

Но в реальных условиях все сложней. Так как в качестве окислителя для выполнения химико-физического процесса горения применяется воздух, в составе, которого кислород, необходимый для поддержания горения, составляет всего пятую часть. А, если точно, то 20,93% — именно такое процентное соотношение принято использовать для всевозможных технических расчетов. То есть воздуха понадобится в 9,52 раза больше.

Узнать указанную цифру получится, выполнив 2 действия:

  1. Деление 100/21. Эта операция позволяет выяснить, что воздуха в любом объеме в 4,76 раза больше, чем кислорода.
  2. Умножение 4,76 на 2, что равняется 9,52 — именно во сколько раз больше понадобится израсходовать воздуха для сжигания любого объема природного газа.

Но есть одна важная оговорка: вычисленное количество воздуха необходимое для эффективного горения газа, является теоретическим расходом. А на практике его понадобится. Причина в том, что расчет проводился для идеальных условий, а в реальности почти всегда существует ряд факторов, которые вносят значительные коррективы.

К ним относятся:

  • состав и качество реагентов (воздуха, газа);
  • вид оборудования, используемого для подвода энергоносителя;
  • состояния оборудования;
  • способа подачи газа, воздуха, а также ряд других моментов.

Если нужна особая точность, то перечисленные выше особенности иногда возможно учесть. К примеру, точный состав газа получится выяснить в ближайшем представительстве службы газа. Но, когда особая точность не нужна, то полученное значение 9,52 просто умножают на, так называемый, коэффициент избытка воздуха. Значение которого обычно лежит в пределах 1,1 — 1,4.

Когда расчет должен быть максимально точным, тогда следует количество действительно используемого воздуха разделить на его теоретический расход. Но в большинстве случаев проще использовать усредненное значение коэффициента избытка воздуха. Значение которого следует умножить на 9,52 и в результате получится узнать точное количество расходуемого воздуха, нужного для обеспечения процедуры сгорания газа.

Так если он равен:

  • 1,1 — воздушной массы понадобится в 10,472 раза больше;
  • 1,4 — воздуха потребуется использовать в 13,328 раз больше.

То есть для сжигания каждого кубического метра энергоносителя понадобится до 13,328 м³ воздуха.

Формулы и примеры выполнения расчета

Необходимое значение в каждом конкретном случае можно получить, воспользовавшись специальной формулой или усредненными показателями. Об этих способах поговорим детальнее.

Способ #1 — вычисление с использованием формулы

Которая гласит, что часовой объем воздуха (Vч ), необходимый для сгорания, будет равен:

Vч = 1,1 х Кизб.в х Vт х Vг/ч х (273 + t)/273,

  • Кизб.в — коэффициент избытка воздуха;
  • Vт— теоретически необходимое количество воздуха;
  • Vг/ч— часовой расход газа оборудованием;
  • t — значения температуры в помещении, где размещено газовое оборудование.

Необходимый для вычислений часовой расход газа указан в паспорте любого газового прибора.

То есть, если такое значение равняется 10, а:

  • температура в помещении, к примеру, 18 °С;
  • коэффициент избытка воздуха — 1,1.

Тогда выполняем, указанные выше математические действия, а именно:

1,1 х 1,1 х 9,52 х 10 х (273 + 18) / 273 = 122,1

В результате выясняется, что в этом конкретном случае для сжигания газа, каждый час нужно будет 122,1 м³ воздуха.

Способ #2 — расчет с помощью усредненных данных

Если нет желания выполнять подобный расчет воздуха на горение нужного количества газа, тогда можно прислушаться к рекомендациям многих производителей, специалистов.

Которые гласят, что процесс будет эффективным, если на каждый киловатт мощности ежечасно подводить не меньше 1,6 м³ воздуха.

То есть выполнить вычисление получится всего за одно действие. Для чего взятое из паспорта значение мощности газового прибора следует умножить на указанные 1,6. В качестве результата получится нужное для эффективного горения количество воздуха.

К примеру, если мощность газового котла составляет 40 кВт, тогда это значение следует умножить на 1,6:

40 х 1,6 = 64

Получится 64 м³ воздуха, которые ежечасно необходимо будет подводить к газовому прибору.

Практическое значение расчета расхода воздуха

Навыки выполнения подобных расчетов могут понадобится для повышения КПД газового оборудования, а также устранения причин его неправильной работы.

Профилактика поломок и понижения КПД оборудования

К примеру, знание оптимального количество окислителя понадобится, когда поверхности дымоходов (внутренние), элементов конструкции оборудования (теплообменники, горелки, прочие) быстро покрываются наслоениями сажи, других продуктов сгорания.

Если устранение загрязнений должного эффекта не дает, как и любые другие меры (настройка, замена частей, узлов агрегатов). Что свидетельствует о наличии так называемого, недогара энергоносителя, который происходит из-за недостаточного количества воздуха.

А также знание необходимого расхода воздуха потребуется в следующих ситуациях:

  • Выявлен перерасход газа, который не получается устранить с помощью регулировок, других манипуляций. Так как причиной может быть механический недожег. То есть процесс при котором подводится слишком большое количество воздуха, что тоже приводит к неполному сгоранию газа.
  • Замечено частое изменение цвета «голубого» топлива во время горения — к примеру, на оранжевый, белый, красный, желтый. Это более сложные случаи, чем предыдущие, так как причиной может быть, как избыток воздуха, так и его недостаточное количество.
  • Неустойчивого процесса горения газа. Например, если задействованы не все рабочие отверстия конфорки, горелки газового котла и т. д. А чистка перечисленных элементов конструкции не привела к улучшению, так как как в таких ситуациях точно придется подводить воздуха на порядок больше.
Читать еще:  Удельная теплота сгорания топлива и горючих материалов

Несмотря на наличие различных причин расчет выполняется одинаково, согласно методике, изложенной выше.

Польза расчетов при обустройстве котельной

Вычисления количества воздуха, необходимого для эффективного окисления газа, необходимы в случаях обустройства топочной, установки, замены газового оборудования и других подобных.

И расчеты выполняются, но ситуация в каждом указанном случае усложняется тем, что для получения всех необходимых данных необходимо выполнить еще ряд вычислений.

К которым относятся расчеты:

  • суммарного расхода воздуха — в помещение с газовым оборудованием необходимо поставлять воздух не только для процесса горения, но и для его проветривания (в СНиП II-35-76 четко сказано, что в помещениях, используемых в качестве топочных, ежечасно должны сменяться 3 объема воздуха);
  • сечения вытяжного канала;
  • сечения (-ий) отверстия (-ий) входных каналов;
  • естественной тяги в предусмотренном вытяжном канале;
  • фактической скорости воздушных масс в сечениях будущих воздуховодов;
  • потерь давления на всевозможные местные сопротивления;
  • размера окна, положенного в помещении с газовым оборудованием.

Кроме правильного обустройства вентиляции котельной, может понадобиться выполнение еще ряда процедур, к примеру, выполнение аэродинамического расчета.

После чего вся полученная информация должна стать основой проекта замены, установки оборудования, перепланировки, который подается в местную газовую службу на утверждение. Где при выявлении ошибок документ могут отправить обратно составителю.

То есть комплекс процедур по исчислению всех необходимых значений достаточно сложен. Поэтому в случае с установкой, заменой, переносом оборудования с задачей справятся только немногие. Большинству владельцев помещений будет проще обратиться за помощью к специалистам. Которые не только выполнят необходимые математические действия, но и адаптируют расчеты к требованиям законодательства по обустройству топочных, систем вентиляции, дымоудаления, всех прочих. Которые изложены в СНиП II-35-76, а также в СНиП 2.04.08-87 и ряде других менее востребованных профильных документов.

Если в каком-то конкретном случае проект составлять не нужно, то расчеты, выполненные специалистом, исключат угрозу жизни, здоровью самого владельца газового оборудования, его близким и людям, проживающим рядом.

Кроме того, позволят избежать действий, трактующихся законодательством, как самовольное подключение к каким-либо газопроводам. За которые ст. 7.19 КоАП РФ предусматривает санкции в виде штрафа, размер которого 10-15 тыс. рублей. К примеру, так может произойти, если владелец помещения после выполнения расчетов, внесет в конструкцию системы отопления изменения.

После вычислений не стоит принимать необдуманного решения по замене газового оборудования, особенно с отличающейся мощностью. Если же так произошло, тогда стоит уведомить представителей газовой службы о выполненных действиях. Что поможет избежать штрафов.

А также не нужно воплощать сделанные теоретические расчеты ценой нарушений правил, норм изложенных в СНиП II-35-76, который регулирует сферу обустройства помещений, предназначенных для использования газового оборудования. Так как согласно ст. 9.23 КоАП даже за самые мелкие нарушения придется выложить 1-2 тыс. рублей.

Выводы и полезное видео по теме

Приложенный ниже видеоматериал позволит выявлять недостаток воздуха при горении газа без каких-либо расчетов, то есть визуально.

Рассчитать количество воздуха, необходимого для эффективного горения любого объема газа можно за считанные минуты. И владельцам недвижимости, оборудованной газовым оборудованием, следует об этом помнить. Так как в критический момент, когда котел или любой другой прибор будет работать неправильно, умение вычислять количество воздуха, нужное для эффективного горения, поможет выявить и устранить неполадку. Что, кроме того, повысит безопасность.

Хотите дополнить изложенный выше материал полезными сведениями и рекомендациями? Или у вас остались вопросы по расчету? Задавайте их в блоке комментариев, пишите свои замечания, принимайте участие в обсуждении.

Стадии процесса горения. Методы сжигания газа

Процессы горения газа складываются из смесеобразования, подогрева газо-воздушной смеси до температуры воспламенения и стадии химической реакции горения.

τгор — общая продолжительность горения, секунды;

τсм, τподхим — продолжительность стадий смесеобразования, подогрева и химической реакции горения, секунды.

Время протекания химической реакции горения в факеле определяется по выражению:

Тт — теоретическая температура горения газа в °К,

Тсм — температура смеси перед фронтом пламени;

То — начальная температура смеси;

а — коэффициент температуропроводности пламени;

uн — нормальная скорость распределении пламени.

Время, необходимое для подогрева газо-воздушной смеси до температуры воспламенения:

Для полного завершения процесса горения газа или время пребывания элементарного объема газа в факеле горелки определяется по формуле:

где hфак – высота факела, м

wn — скорость выхода смеси из головки горелки

Высота факела элементарной трубчатой горелки

hфак = R

R — радиус горелки , м

Тогда время, необходимое для смешения газа с воздухом:

Если принять за единицу времени τхим, то

Так как подогрев и реакции горения протекают весьма быстро , то основным фактором, лимитирующим действительность процесса горения является время, затрачиваемое на перемешивания газа и воздуха. от быстроты и качества перемешивания в горелки зависит скорость и полнота сгорания газа , длина и температура пламени. В зависимости от места и способа смесеобразования разделяются на диффузионный, кинетический и смешанный.

Все это – факельное сжигание. Существует понятие беспламенного сжигания. Это сжигание хорошо подготовленной и смешанной горючей смеси в порах или каналах раскаленного огнеупорного насадка, установленного на выходе из горелки (пламя есть – внутри, его невидно).

В зависимости от места и способа смесеобразования методы сжигания газа подразделяются на:

При дифф. методе к месту горения из горелки поступает только газ, а весь небх-мый для горения в-х поступает из внешней среды за счет турбулентной диффузии. Для этого метода характ-ны светимость и значит-ная длина пламени.

«+»:1.Выс.устойчивость пламени в широком диапазоне изменения тепловых нагрузок

2.Невозможность проскока пламени.

3.Равном-ная т-ра по длине пламени

«- »:1.Низкая интенс-сть горения.

2.неизбежность термического распада углевод-дов.

3.Необх-сть больших топочных объемов.

При кинетич. методе к месту горения подается заранее приготовленная смесь газа с в-хом. смесь сгорает быстро в прозрачном факеле без видимого образования продуктов термического распада углеводородов.

2.Малая вероят-ть хим.недожога.

3.Небольшая длина пламени

«- »:1.Необх-сть стабилизации пламени.

При смеш. методе часть в-ха в виде первичного подмешивается к газу за счет инжекции в самой горелке, а остальной в-х в кач-ве вторичного диффундирует в зонугорения из окруж среды. Факел получ. более коротким и менее светящимся, чем при дифф.методе.

Все три метода факельное сжигание.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Кинетический метод сжигания газа

Кинет. методе сжигания характеризуется тем, что к месту горения подается полностью подготовленная внутри горелки газовоздушная смесь, сгорая в коротком факеле голубым прозрачным конусом. Таким образом, сгорание топлива осуществляется на поверхности этого конуса, который и называется фронт кинетического горения.

1. 28.Смешанный метод сжигания газа

В зависимости от способа образования газовоздушной смеси существуют 3 метода сжигания газа:

— диффузионный- смешанный- кинетический.

При диффузионном методе газ к фронту горения поступает под давлением, а воздух за счет диффузии из окружающего пространства.

При кинетическом методе к фронту горения поступает газовоздушная смесь, подготовленная внутри горелки.

Смешанный (диффузно-кинетический) метод обеспечивается предварительным смешиванием газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды, непосредственно к факелу.
Сначала выгорает часть газа, смешанного с первичным воздухом, а остальная часть, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха.. В результате факел получается менее коротким и менее светящимся. В горелках, имеющих неполное предварительное смешение воздух продвигается в полном объеме, из горелки выходит плохо перемешанная неоднородная газовоздушная смесь, а воздух к диффузионному фронту горения поступает из внутренней части факела.

2.

3. 29.Классификация газовых горелок

Газ.горелка – устр-во, обеспечивающие сжигание газообразного топлива и регулирование процесса горения.

Назначение газовых горелок:

-подача газа и воздуха к фронту горения газа -смесеобразование

-стабилизация фронта воспламенения

-обеспечение требуемой интенсивности горения газа

По способу смешивания газа с воздухом горелки делят на 4 группы:

1.диффузионные горелки – без предварительного смешения газа с воздухом

2.кинетические – с полным предварительным смешением газа с воздухом

3.горелки с неполным предварительным смешением газа с воздухом

4горелки с частичным предварительным смешением газа с воздухом.

По способу подачи воздуха горелки могут быть:

1) Диффузионные. Весь воздух поступает к факелу из окруж. пространства. Газ подаётся в горелку без первичного воздуха и, выходя из коллектора, смешивается с воздухом за его пределами.

Читать еще:  Тепло ли в синтепоне зимой

Самая простая по конструкции горелка, обычно труба с насверленными в один или два ряда отверстиями.

Достоинства: простота конструкции, надежность работы (невозможен проскок пламени), бесшумность, хорошее регулирование.

Недостатки: малая мощность, неэкономична, высокое пламя.

2) Инжекционные горелки:

а) низкого давления или атмосферная (относятся к горелкам с частичным предварительным смешением). Струя газа выходит из сопла с большой скоростью и за счёт своей энергии захватывает в конфузор воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из горловины, диффузора и огневого насадка.

Горелки ограниченно применяются на оборудовании большой производительности (более 100 кВт). Связано с тем, что коллектор горелки располагается непосредственно в топке. При работе нагревается до высоких температур и быстро выходит из строя. Имеют высокий коэффициент избытка воздуха, что приводит к неэкономичному сжиганию газа.

б) среднего давления.

Достоинства: простота конструкции, устойчивая работа при изменении нагрузки, отсутствие подачи воздуха под давлением (нет вентилятора, электродвигателя, воздухопроводов), возможность саморегулирования (поддержания постоянного соотношения газ-воздух).

Недостатки: большие габариты горелок по длине, особенно горелок увеличенной производительности, высокий уровень шума.

3) Горелки с принудительной подачей воздуха (дутьевые). Образование газовоздушной смеси начинается в горелке и завершается в топке. Воздух подаётся с помощью вентилятора. Подача газа и воздуха осуществляется по отдельным трубам. Работают на газе низкого и среднего давления. Для лучшего перемешивания поток газа направляют через отверстия под углом к потоку воздуха.

Для улучшения смешения потоку воздуха сообщают вращательное движение, используя завихрители с постоянным или регулируемым углом установки лопаток.

Горелки, предназначенные для сжигания нескольких видов топлива, называются комбинированными.

Достоинства: большая тепловая мощность, широкий диапазон рабочего регулирования, возможность регулирования коэффициента избытка воздуха, возможность предварительного подогрева газа и воздуха.

Недостатки: достаточная сложность конструкции; возможен отрыв и проскок пламени, в связи с чем возникает необходимость применения стабилизаторов горения (керамический туннель, пилотный факел и т. д.).

К отдельной категории необходимо отнести модулируемое оборудование. Интересной особенностью такой горелки является ее способность автоматически подстраиваться под потребности дома и менять свою мощность и интенсивность горения в зависимости от температуры на улице и в доме. Таким образом, удается достичь большой экономии денежных средств.

Дата добавления: 2018-02-18 ; просмотров: 456 ; ЗАКАЗАТЬ РАБОТУ

Принципы сжигания газа. Основные режимы распространения пламени. Методы сжигания газа. Газовые горелки. Классификация. Основные параметры, характеристики. Область применения.

Процесс горения газа состоит из трех последовательно протекающих стадий. Первая стадия представляет собой процесс смесеобразования, в результате которого обеспечивается физический контакт между топливом и окислителем. Вторая стадия — это подогрев смеси до температуры воспламенения. Третья стадия — химическая, в этой стадии протекают реакции горения газа. При сжигании заранее приготовленной газовоздушной смеси суммарная скорость процесса будет определяться скоростью подогрева и горения смеси. В этом случае стадия смесеобразования исключена и горение протекает по кинетическому принципу.

Приготовленная смесь должна иметь однородный состав с некоторым избытком воздуха ( >1). Таким образом, процесс кинетического горения определяется свойствами горючей смеси: энергией активации, концентрацией реагирующих веществ, коэффициентами теплопроводности и температуропроводности, т. е. физическими и кинетическими свойствами газовоздушной смеси. При горении в ламинарном потоке эти свойства полностью определяют интенсивность процесса. При горении в турбулентном потоке на суммарной скорости процесса начинают сказываться турбулентные его характеристики, причем тем в большей степени, чем сильнее турбулизация потока.

Кинетический процесс горения характеризуется малой устойчивостью, поэтому при сжигании газа таким способом необходимо применять приемы искусственной стабилизации фронта воспламенения. Если газ и воздух предварительно не перемешивают, а подают в горелку раздельно, смесеобразование протекает одновременно с горением и скорость процесса горения в целом определяется скоростью течения физической стадии, т. е. скоростью смесеобразования, ибо в этом случае «узким» местом процесса будет возникновение контакта между газом и воздухом. Такую область горения называют диффузионной, так как необходимый для процесса горения контакт между газом и воздухом осуществляется за счет молекулярной или турбулентной диффузии.

При сжигании газа по диффузионному принципу процесс смесеобразования совмещается с процессом горения в единую поточную систему. Как только достигается контакт между газом, и воздухом и образуется горючая смесь необходимого состава, сразу же начинается процесс горения. Так как при высоких температурах, господствующих в топочном пространстве, скорость химических реакций несоизмеримо больше скорости процесса смесеобразования, то суммарная скорость процесса в целом определяется скоростью образования горючей смеси. Таким образом, скорость диффузионного горения определяется аэродинамическими, диффузионными факторами и практически не зависит от физических и кинетических свойств смеси.

Одним из достоинств диффузионного метода сжигания газа является возможность регулирования процесса в широком диапазоне, ибо процесс горения определяется характером и интенсивностью смесеобразования. Процессом же смесеобразования довольно легко управлять путем изменения конструкции газогорелочной системы или введением в нее регулировочных элементов. В результате этого можно значительно сокращать размеры факела или, наоборот, предельно его вытягивать.

Для повышения интенсивности процесса диффузионного горения и получения короткого и компактного факела необходимо максимально интенсифицировать процесс смесеобразования. Этого достигают следующими способами: дроблением потоков газа и воздуха, закручиванием потока воздуха, направлением струи газа под углом к потоку воздуха, выбором оптимальных скоростей газа и воздуха, искусственной турбулизацией потоков. Используя указанные методы, повышающие интенсивность смесеобразования, можно получать факелы различных размеров и характеристик. С повышением интенсивности смесеобразования факел по своим характеристикам будет приближаться к кинетическому. Диффузионный процесс горения характеризуется большей устойчивостью, чем кинетический. Однако при больших форсировках применяют искусственные приемы стабилизации фронта воспламенения. .

Находит применение и смешанный принцип сжигания газа, когда горелка обеспечивает предварительное смешение газа только с частью необходимого воздуха, а остальной воздух поступает непосредственно к факелу. В этом случае кинетически выгорает только часть газа, смешанная с первичным воздухом. Оставшаяся часть газа, разбавленная продуктами горения, выгорает за счет кислорода вторичного воздуха, т. е. по диффузионному принципу. В частности, такой метод сжигания используется в атмосферных горелках. Факельное горение можно легко регулировать изменением коэффициента первичного воздуха. Так, уменьшая коэффициент первичного воздуха до нуля, можно перейти к чисто диффузионному горению, а увеличивая его до единицы, можно обеспечить сжигание газа по кинетическому принципу.

Все стадии процесса горения (смесеобразование, подогрев и горение) осуществляются в газовой горелке и в камере горения. Основные функции газовой горелки сводятся к подаче газа и воздуха в топку, смесеобразованию, стабилизации фронта воспламенения, обеспечению требуемой интенсивности процесса горения газа и минимальных концентраций токсичных газов в продуктах горения.

Для смешения газа с воздухом горелка имеет смесительное устройство. Если горение осуществляется по кинетическому принципу, то смеситель представляет собой самостоятельный элемент, в котором приготовляется однородная газовоздушная смесь. При сжигании газа диффузионным методом смесительное устройство создает только необходимые условия для протекания процесса смесеобразования с требуемой интенсивностью. Сам же процесс смешения полностью происходит в топочной камере или частично начинается на выходе из горелки и заканчивается в топке.

Другим элементом горелки является головка. Она обеспечивает выход газовоздушного потока в топочную камеру или воздушное пространство. Основное назначение головки — стабилизировать фронт воспламенения уже готовой или только что образовавшейся горючей смеси у устья горелки и предотвратить проскок и отрыв пламени.

Третий элемент горелки — огневая часть — представляет собой амбразуру или туннель, где частично или полностью протекает процесс горения. Огневая часть горелки одновременно служит и составной частью гопочной камеры. Огневое устройство горелки создает устойчивый очаг зажигания и стабилизирует процесс горения, предотвращая отрыв пламени. Горелка может не иметь огневого устройства, в этом случае устойчивость факела полностью обеспечивается головкой, а сам факел располагается непосредственно в топке или в открытом пространстве. Строгого разграничения функций между отдельными элементами горелки, а также между горелкой и топкой провести нельзя, так как ряд операций выполняется совместно горелкой и топкой.

Основным свойством горелки является осуществляемый ею метод сжигания газа, который в значительной степени зависит от степени подготовленности горючей смеси, выходящей из головки горелки. Именно этот признак следует рассматривать как основной и использовать для классификации горелок.

По способу подачи воздуха горелки подразделяются на:

1) эжекционные, в которых воздух засасывается энергией газовой струи (эжектирование воздухом газа применяют весьма редко);

2)бездутьевые, у которых воздух поступает в топку вследствиеразрежения;

3)дутьевые с подачей воздуха в топку с помощью вентилятора.

Эжекционные горелки иногда называют инжекционными. Основное назначение эжектора горелки состоит в засасывании необходимого количества воздуха из атмосферы. Это количество должно находиться в определенном соотношении с расходом газа, так как соотношение газа и воздуха в смеси зависит от осуществляемого метода сжигания газа.

По давлению газа горелки подразделяются на горелки низкого давления (до 5 кПа) и горелки среднего давления (5—300 кПа). Горелки с более высоким давлением широкого применения не имеют.

Ссылка на основную публикацию
Adblock
detector
×
×