3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Собираем роботпылесос на Arduino

Собираем робот-пылесос на Arduino


Шаг первый. Создаем поворотную платформу для робота
Для своей первой самоделки автор использовал танк из игры «Танковый бой», из игрушки были выброшены все лишние детали, остался только корпус, а также двигатели и колеса. После этого был установлен Arduino UNO, драйвер двигателей и ультразвуковой дальномер. В качестве источника питания использовались три литиевые батареи по 3.7 В.

Такая конструкция имела ряд минусов. К примеру, из-за того, что колеса находились сзади платформы, у робота возникали проблемы при повороте, робот часто буксовал.

Также из-за очень большой скорости передвижения робот порой не успевал реагировать на сигналы дальномера и врезался.


Все проблемы были решены путем сборки новой платформы из картона. Для этого нужно вырезать 2 круга диаметром 30 см, а затем склеить их поперек волокон. В итоге получается довольно прочная конструкция на изгиб. Что касается моторчиков и редукторов, то они были взяты из предыдущей самоделки.

Шаг второй. Создаем сенсоры
Изначально робот ориентировался за счет дальномеров, но автору их работа не понравилась и в итоге было решено от их избавиться. На их смену пришли контактные бампера, при этом робот стал вести себя адекватнее, да и вложений при этом требуется меньше.




Контактные бампера изготавливаются очень просто. Нужно взять картон и на одну его сторону приклеить фольгу, это будет первым контактом. К этой фольге нужно подать напряжение +5 В. Напротив платформы нужно установить изогнутый проводок от витой пары, он подключается через резистор, благодаря этому ложных срабатываний будет меньше. Когда робот будет во что-то врезаться, то будут замыкаться контакты, и затем электроника будет разворачивать робота в другом случайном направлении.

Шаг третий. Делаем пылесос и пылесборник
Благодаря таким материалам как картон и скотч можно быстро собрать практически любой макет. Для работы турбины используется источник питания в 18 Вольт, напрямую от батареи. При такой нагрузке кулеры греются, но работают.









Для изготовления турбины берется кулер от компьютера и затем от него отламываются все лопасти. Далее на кулер крепится турбина от пылесоса, ее нужно приклеить суперклеем. Самое главное здесь — приклеить точно, не должно быть дисбаланса. Без нагрузки и питании 18 Вольт кулер выдает порядка 2600 RPM, что создает отличную тягу. В заключении вся конструкция собирается так, как можно увидеть на фото и после этого робота можно испытывать.

Что касается алгоритма работы, то он очень простой. Если робот во что-то врезается, он затем разворачивается на случайный угол.
В будущем автор планирует сделать платформу из фанеры, чтобы она была прочнее. Еще в планах установка двух щеток спереди для более эффективной сборки мусора. Выдуваемый воздух можно направить под платформу, чтобы пыль собиралась эффективнее.
Источник

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Как сделать робот-пылесос своими руками на Ардуино

Робот-пылесос своими руками Ардуино изготавливается из подручных материалов. Оборудование способно перемещаться по комнате, изменять направление движения после контакта с посторонними предметами и удалять пыль с поверхности пола.

Требуемые компоненты

Для сборки пылесоса на Ардуино потребуются компоненты:

  • блок управления;
  • отдельный контроллер для управления работой электродвигателей (обозначается на схемах как H-Bridge);
  • электрические двигатели постоянного тока с редукторами для привода боковых колес;
  • комплект колес;
  • источник питания (аккумуляторы или батарейки, суммарное напряжение 5 В);
  • турбина (используется узел, предназначенный для охлаждения процессоров или чипов видеокарт);
  • адаптер питания (при использовании компонентов, рассчитанных на напряжение 12 В);
  • комплект магнитов;
  • коммутационный шнур USB;
  • комплект кабелей для подключения блока Ардуино к цепям оборудования;
  • листовой плотный картон;
  • термический клей в тубе;
  • пистолет для нанесения клея;
  • резервуар для сбора пыли (готовый пластиковый или металлический контейнер);
  • пластиковые хомуты;
  • металлическая банка от напитков (для изготовления крепежных элементов).

Процесс сборки

Пошаговый процесс сборки робота-пылесоса Ардуино:

  1. Разложить компоненты конструкции будущего изделия на ровной поверхности для определения взаимного расположения и габаритов корпуса.
  2. Вырезать из картона круглое основание.
  3. Выполнить на детали прорези для боковых колес, которые располагаются по поперечной оси симметрии.
  4. Закрепить электрические приводы колес пластиковыми хомутами к корпусу.
  5. Прорезать канал для забора воздуха и зафиксировать клеем турбину над полученным окном. Узел крепится на противоположной от двигателей ходовой части стороне поддона.
  6. Разметить зону установки контейнера для пыли, который размещается над окном с роторным рабочим колесом.
  7. Установить и закрепить термическим клеем на внутренней части магниты (по предварительно размеченному контуру резервуара для пыли). Ответные магнитные элементы размещаются через лист бумаги на противоположной стороне поддона. Емкость для пыли приклеивается к магнитам, которые плотно прижимаются к боковой поверхности резервуара. Лист бумаги удаляется, коробка удерживается на запланированной монтажной точке взаимным притяжением магнитов.
  8. Закрепить на верхней плоскости поддона аккумуляторную батарею и контроллер Ардуино. Допускается установка элементов в направляющие узлы, изготовленные из древесины или пластика. Пользователи используют стандартные блоки управления Ардуино, часть владельцев самостоятельно корректирует прошивку микропроцессора путем подключения изделия к компьютеру.
  9. Разместить блок H-Bridge поверх контроллера и соединить электронику пылесоса с аккумулятором. Для соединения кабелей применяется пайка и установка коммутационных штекеров.
  10. Подключить электрические двигатели к выводам блоков управления.
  11. Вырезать картонные заготовки для фронтального бампера. Детали монтируются на передней части корпуса, точка соединения допускает перемещение бампера после столкновения робота с препятствием.
  12. Припаять отрезки кабеля к прямоугольным жестяным пластинам (требуется изготовить 2 элемента). Металлические пластинки устанавливаются на расстоянии от внутренней стороны импровизированных бамперов. На внутренней поверхности бампера наклеивается фольга, на которую подается положительное напряжение от батареи. При столкновении пластинка соединяется с фольгой и работает как датчик препятствия. В сигнальной цепи от пластины устанавливается дополнительное сопротивление, снижающее риск ложных срабатываний.

Для очистки воздуха от пыли применяется фрагмент от кухонной салфетки, изготовленной из волокнистого синтетического материала. Элемент устанавливается под основанием контейнера пылесборника и удерживается магнитами. В самом контейнере прорезается прямоугольный канал, через который затягивается воздух с пылью. Для регулировки зазора между резервуаром и напольным покрытием применяется сменное дистанционное кольцо из картона или пробки.

Как сделать робот-пылесос своими руками — 2 идеи сборки

В современном ритме жизни не всегда получается поддерживать в доме чистоту. В этом деле поможет современные технологии. Робот-пылесос появился более 15 лет назад. Его типовой внешний вид напоминает крупную шайбу, которая передвигается по комнате по заданному алгоритму или случайным образом (пока на что-нибудь не наткнется) и собирает мусор. Предлагаем вам изучить 2 пошаговые инструкции, позволяющие сделать робот-пылесос своими руками.

Читать еще:  Правила охраны труда при эксплуатации электроустановок

Материалы для сборки

Итак, для сборки робота-пылесоса нужно разобраться с его составными частями, пойдем по порядку. Он должен сам передвигаться по комнате, поэтому нужны двигатели, в зависимости от конечной конструкции их должно быть от 2-х до 4-х, а также возможность переключения направления вращения и скорость, значит, нужна плата для управления двигателями. Если вы используете двигатели постоянного тока, то нужна плата с 4-мя транзисторами (H-мост).

Самодельный робот-пылесос должен определять столкновения со стенами и мебелью. Для этого нужно предусмотреть датчики препятствия и концевые выключатели на «бампере». Также нужен сам рабочий орган – пылесос. При этом он должен быть рассчитан на работу от постоянного тока низкого напряжения (например, 12В).

Кроме пылесоса нужна подвижная (вращающаяся) щетка, которая будет отчищать поверхность, поднимать ворс половика, сметать мусор. Для этого нужен еще один или два моторчика.

Система, которая будет всем этим управлять. Простейший вариант на Arduino. Для такой задачи подойдет любая из плат, по размерам удобно разместить вариант Nano или Pro mini.

Идея №1: робот-пылесос из картона

Основа робота делается из плотного картона. Его лучше склеить в пару слоев, а волокна разместить перпендикулярно. Для его технической начинки нужен такой набор деталей:

  1. Любая плата Arduino.
  2. Breadboard или простая макетная плата, в принципе можно и без неё, всё просто спаять.
  3. 2 ультразвуковых датчика расстояния (дальномер).
  4. Турбина от пылесоса.
  5. Небольшой двигатель или кулер от компьютера.
  6. Двигатели с редукторами и колеса.
  7. Контроллер для двигателя.
  8. Провода для соединений схемы.
  9. Аккумуляторы и контроллер заряда.

В качестве питания для робота нужно использовать 3 литиевых аккумулятора. Напряжение каждого из них 3,7 В. Для их заряда нужен контроллер. Например, такой как на фото:

Для управления двигателями привода робота удобно использовать модуль на L298-микросхеме. Схемотехнически это H-мост, вы можете его собрать своими руками из отдельных компонентов, но купить готовую плату будет надежнее. С его помощью вы можете задавать скорость движения робота-пылесоса и изменять направление вращения.

Для регулировки скорости на пин ENA или ENB подаётся ШИМ сигнал, а для задания направления вращения подают разноименные сигналы на IN1 и IN2 для одного двигателя и IN3, IN4 для другого двигателя. При этом если на пине IN1 у нас логическая единица, а на пине IN2 – логический ноль, двигатель крутится в одну сторону, чтобы сменить направление нужно поменять местами 1 с 0. Его нужно собрать с ардуино по такой схеме (пины можно использовать любые, это вы укажете в скетче).

Схема на ардуино

Далее нужно делать основу из картона и закрепить на ней колеса, должно получиться что-то вроде этого:

Основа из картона

Вот вид с нижней стороны. Два ведущих колеса с угловым редуктором и поворотное колесо:

Теперь нужно собрать схему, которая монтируется на основание. Диаметр основания должен быть около 30 см, чтобы туда влезла и электроника и сам блок пылесоса.

Вместо дальномеров можно использовать вариант с бамперами, которые соединены с концевыми выключателями. При столкновении с препятствием система управления даст сигнал о смене направления движения.

Контактные бампера можно сделать и своими руками, для этого нужен тонкий, но жесткий провод, например от витой пары. Для этого формирует контактную площадку на внутренней стороне бампера из фольги, и закрепляем проводник как это показано ниже. При столкновениях робота-пылесоса с мебелью и стенами они будут соприкасаться. Вам остается отрегулировать расстояние от проволоки до фольги, чтобы добиться нужной чувствительности и исключить ложные срабатывания. На фольгу подается 5В, а провод идёт на вход Ардуино, подтянутый к минусу через резистор на несколько кОм.

Самодельный контактный бампер

Устройство питается от аккумуляторов, для питания системы управления можно применить линейные стабилизаторы типа l7805. Чтобы отрегулировать скорость вращения моторов подойдет понижающий преобразователь, например LM2596.

Самое сложное — это сконструировать и собрать пылесос. Вот его приблизительный чертеж:

Отламываем родные лопасти от кулера, и закрепляем на его роторе турбину от пылесоса. Важно закрепить турбину точно в центре, иначе вы получите дисбаланс и вибрации.

Вот так выглядит обратная сторона турбины, закрепленной на роторе кулера. Закрепить её можно на термоклей или на суперклей

Вид турбины изнутри

Вот и вся пошаговая инструкция по сборке робота-пылесоса, сделанного из подручных материалов. Алгоритм его работы такой: робот-пылесос едет вперед, пока не встретит препятствие. После столкновения (или приближения, если вы используете УЗ дальномеры) останавливается, отъезжает назад на заданное расстояние, разворачивается на произвольный угол и едет дальше.

Идея №2: почти заводской робот

Предлагаем вашему вниманию не более сложный проект робота-пылесоса. Вот его внешний вид в собранном состоянии:

Самодельный роботизированный пылесос

Система навигации в нем собрана из комплекта 6-ти ИК-датчиков препятствия. На случай, если не сработал ни один из них, то предусмотрены два контактных датчика (концевых выключателя). Система управления двигателями на таком же драйвере с микросхемой L298N. Для его сборки вам понадобится:

  1. Плата Ардуино, в оригинале использовалась Pro-mini.
  2. USB-TTL переходник для прошивки этой модели ардуино. Если вы будете использовать Arduino Nano, то он не нужен, т.к. в ней есть возможность прошивки по USB.
  3. Драйвер для моторчиков L298N.
  4. Моторчики для колес с редуктором.
  5. 6 ИК-датчиков.
  6. Моторчики для турбины (по возможности помощнее).
  7. Крыльчатка турбины пылесоса.
  8. Моторчики для щеток могут быть любыми.
  9. 2 датчика столкновения.

Всё это собрать по такой схеме:

Схема сборки робота-пылесоса

Для сборки цепи питания робота-пылесоса нужны:

  1. 4 литиевых аккумулятора, подойдут типа 18650.
  2. 2 преобразователя постоянного напряжения (повышающий и понижающий).
  3. Контроллер для заряда и разряда 2-х аккумуляторов (искать в интернете по запросу 2s li-ion controller). В схеме используется последовательное включение двух параллельно включенных банок, в итоге их выходное напряжение получается больше 7,4В, а параллельная цепочка нужна для повышения ёмкости и автономности работы.

Вот схема питания этого робота:

Кроме этого нужен пластик (ПВХ) или любой другой материал для корпуса робота, можно его распечатать на 3D-принтере, если у вас есть такая возможность.

Для работы самоделки нужна прошивка, вот пример алгоритма хаотичной уборки, мы взяли его с сети. Ссылка для скачивания скетча: прошивка для робота-пылесоса.

В этой статье были рассмотрены 2 конструкции робота-пылесоса, которые можно повторить и собрать своими руками. Сделать автоматическое средство для уборки помещения можно, вложившись в бюджет от 30 до 100 долларов. Самыми дорогими деталями являются аккумуляторы, двигатели и платы ардуино. Если у вас получилось собрать самодельный робот-пылесос или вы придумали другую конструкцию, присылайте примеры в комментарии, будем рады открытому общению!

Читать еще:  Электрическая ножеточка какую выбрать

Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется еще несколько идей, как сделать робот-пылесос в домашних условиях:

Создание прототипа робота пылесоса на базе Arduino Uno

  • Цена: $5.80
  • Перейти в магазин

Arduino — это открытая платформа, которая позволяет собирать всевозможные электронные устройства. Arduino будет интересен креативщикам, дизайнерам, программистам …., и желающим собрать собственный гэджет. Устройства могут работать как автономно, так и в связке с компьютером. Всё зависит от идеи.
Платформа состоит из аппаратной и программной частей. Для программирования используется упрощённая версия C++. Разработку можно вести как с использованием бесплатной среды Arduino IDE, так и с помощью произвольного C/C++ инструментария.
Для программирования и общения с компьютером понадобится USB-кабель.

Для постройки прототипа робота — пылесоса заказал плату Arduino Uno. Вместе c Uno заказал: Драйвер двигателей, для управления двигателями, Ик датчики «органы чувств» робота пылесоса, Ну и проводочки, куда без них? Преобразователь DC-DC и аккумуляторы заказывал в других онлайн магазинах.

Составляющие моего устройства:

— Arduino -центральный контроллер
— Драйвер двигателей — устройство, которое преобразовывает управляющие сигналы малой мощности в токи, достаточные для управления моторами
— ИК датчики — датчики препятствий расстояние обнаружения препятствия 3-80см
— ИК датчики — датчики препятствий расстояние обнаружения препятствия 2-20см
— Электродвигатель турбины
— Электродвигатель боковых щеток
— Электродвигатель центральной щетки
— Электродвигатель перемещения
— Аккумуляторы литиевые

Вот, что получилось.
Фотки не все, загружаю, какие остались.

Компоненты устройства:

Вид снизу:

Вид сверху:

Вид сбоку:

Перед первым пуском:





Первый пуск)) без корпуса


#define DriveVector1 2
#define DriveSpeed1 3
#define DriveVector2 4
#define DriveSpeed2 5
#define InSensor1 12
#define InSensor2 11
#define LedLamp 13

int sensorStatus1, sensorStatus2;
int HIGHValue, LOWValue;

void setup()
<
// put your setup code here, to run once:
pinMode(DriveVector1, OUTPUT);
pinMode(DriveVector2, OUTPUT);
pinMode(DriveSpeed1, OUTPUT);
pinMode(DriveSpeed2, OUTPUT);
pinMode(LedLamp, OUTPUT);
pinMode(InSensor1, INPUT);
pinMode(InSensor2, INPUT);
HIGHValue = HIGH div 2;
LOWValue = LOW;
>

sensorStatus1 = digitalRead (InSensor1);
sensorStatus2 = digitalRead (InSensor2);

void BodyForward()
<
digitalWrite(DriveVector1, LOWValue);
digitalWrite(DriveSpeed1, HIGHValue);
digitalWrite(DriveVector2, LOWValue);
digitalWrite(DriveSpeed2, HIGHValue);
>

void BodyBackward()
<
digitalWrite(DriveVector1, HIGHValue);
digitalWrite(DriveSpeed1, LOWValue);
digitalWrite(DriveVector2, HIGHValue);
digitalWrite(DriveSpeed2, LOWValue);
>

void BodyRight()
<
digitalWrite(DriveVector1, HIGHValue);
digitalWrite(DriveSpeed1, LOWValue);
digitalWrite(DriveVector2, LOWValue);
digitalWrite(DriveSpeed2, HIGHValue);
>

void BodyStop()
<
digitalWrite(DriveVector1, 0);
digitalWrite(DriveSpeed1, 0);
digitalWrite(DriveVector2, 0);
digitalWrite(DriveSpeed2, 0);
>

Робот на Ардуино и машинка на Bluetooth своими руками

Робот – машинка на Ардуино становятся одним из самым популярных инженерных проектов в школьной робототехнике. Именно с таких устройств, автономных или управляемых со смартфона и bluetooth, начинается путь в робототехнику “после Lego”. К счастью, сегодня можно без труда купить все необходимые компоненты и достаточно быстро создать своего первого робота для езды по линии или объезда препятствий. В этой статье вы найдете подробную видео инструкцию как сделать продвинутый автомобиль Arduino Car своими руками, с питанием, датчиками линии, расстояния и управлении через bluetooth.

Робот на ардуино своими руками

В отличие от других проектов, создание робота – автомобиля (Arduino Car) требует понимания и навыков работы сразу с несколькими важными компонентами, поэтому не стоит приступать к созданию машинок без получения базовых навыков работы с платформой Arduino. В любом случае, вам нужно будет но только подключить готовые модули, но и собрать конструкцию, шасси с двигателями, обеспечить правильное питание и управление. Все это потребует определенного терпения.

Робот машина на Ардуино

Вот список ключевых компонентов, которые обязательно встретятся в проекте.

Контроллер Ардуино

Куда уж без него, если мы говорим о проектах на этой платформе. Как правило, роботы машины делают на базе плат Arduino Uno и Nano. Mega будут слишком большие, Pro Mini сложнее подключать к компьютеру и соединять с остальными компонентами, а Leonardo требуют дополнительных навыков в программировании, они дороже и их основное преимущество (тесная интеграция с компьютером в качестве периферийного устройства) в данном случае не слишком востребована.

Есть еще вариант использования плат ESP8266 или ESP32, тогда в проекте появляется возможность управления машиной через WiFi. Но и сами платы и их программирование требует определенных навыков, в этой статье мы будем говорить преимущественно об Uno или Nano.

Конструкция, шасси и двигатели робота на Ардуино

Для того, чтобы что-то поехало или стало перемещаться, надо снабдить “это” колесами, гусеницами или манипуляторами-ногами. Вот тут выбор совершенно не ограничен, можно использовать совершенно любые комбинации и сочетания платформ. Как правило, в качестве начального варианта берутся уже готовые наборы платформ с Алиэкспресс.

Двигатель, шасси и колеса машинки на ардуино

Если работать со стандартными наборами вам не интересно, можно создать платформу своими руками. Например, разобрать игрушечные радиоуправляемые машинки или любые двигатели на 5-12 вольт, с редукторами или без. Колеса можно создать и самим, что тоже является интересной задачей.

Драйвер двигателей

Ардуино – достаточно ранимое устройство, не терпящее больших нагрузок по току. Соединяя его с “брутальными” мощными двигателями, не избежать беды. Поэтому для нормальной совместной работы нам нужно будет включить в схему робота компонент, отвечающий за управление двигателями – подающий и отключающий ток на их обмотки. Речь идет о микросхеме или готовом модуле, которые называют драйвером двигателя. На нашем сайте есть статьи, посвященные драйверам, построенным на схеме H-моста. Если вы покупаете готовые шасси, то обязательно предусмотрите возможность размещения на них подходящего драйвера.

Красивый корпус

Как правило, вся конструкция автомобиля строится вокруг его шасси. Если посмотреть примеры готовых проектов, то они часто выглядят как “провода на колесиках” – внешний вид их изобилует пучками соединительных проводов, ведущих от восседающего на троне контроллера Ардуино к драйверам, моторам и датчикам. Между тем, красивый и функциональный корпус не только вызывает правильные эстетические чувства и помогает выделить вашу модель от остальных. Хороший корпус может превратить игрушку в реальное устройство, помогает привить навыки конструирования и промышленного дизайна, что важно для инженеров любого возраста.

Питание робота

Обеспечение правильной схемы питания – это то, что очень часто оказывается на последнем месте в списке приоритетов начинающих ардуинщиков. Между тем, именно ошибки в схеме электропитания становятся основными причинами проблем, возникающих в процессе работы умных устройств на Ардуино. Создавая ардуино-машинку нужно предусмотреть питание контроллера, двигателей, драйвера и датчиков. У всех них есть свои ограничения и особенности работы, требуется создать оптимальное по весу и сложности решение, позволяющее учесть все эти ограничения.

Читать еще:  Как выбрать электроинструмент советы мастера

Питание робота на Ардуино

Создавая по-настоящему автономное устройство робота, нужно побеспокоиться и о времени его работы, и о возможности быстрой подзарядки или смены батареек. Как правило, выбираются решения из следующих вариантов:

  • Обычные батарейки AA. Тут нужно понимать, что платы Arduino Uno, Nano и большинство двигателей, используемых в Ардуино-робототехнике, требуют напряжения в диапазоне 6-9 вольт. Поэтому придется собрать вместе последовательно не менее 4 батареек на 1,5 В, причем сами батарейки должны быть хорошего качества и обеспечивать работу с достаточно большим током. Например, большинство солевых батареек этим критериям не удовлетворяют. Батарейки AAA при создании ардуино-машинок практически не используются из-за своей пониженной емкости (хотя могут использоваться в миниатюрных моделях, где размер имеет первостепенное значение).
  • Аккумулятор AA. Здесь возникает еще большее ограничение по напряжению и току. Большинство аккумуляторов выдают напряжение 1,2 вольт, поэтому их требуется больше для “собирания” нужных нам 6-9 вольт. Несомненным плюсом является возможность перезарядки.
  • Литиевые аккумуляторы 18650. Это уже “серьезная артиллерия”, позволяющая получить большое время автономной работы, возможность подзарядки и приемлемые характеристики по току и напряжению. Рабочее напряжение для таких элементов питания – 3,7 В, что позволяет собирать готовую схему питания всего из двух элементов.
  • Другие источники питания. Сюда можно включить как более мощные и габаритные никель-металлгидридные, кадмиевые аккумуляторы, так и многочисленные литий-ионные “плоские” варианты, используемые в дронах, смартфонах или другой портативной цифровой технике.

Каким бы ни был источник питания, нужно обеспечить его надежное крепление, удобное расположение, защиту от воздействия недружелюбной окружающей среды. Если вы подключаете к одному источнику и контролер, и двигатели, и датчики, то нужно позаботиться о правильной схеме, включающей, например, надежную связь “по земле” всех устройств.

Где купить платформу и запчасти

Все, о чем говорится в этой статье, можно без проблем купить на всем известном сайте. К сожалению, подавляющее большинство предложений основываются на стандартной платформе 4WD автомобиля с двумя несущими планками, не очень надежными двигателями и колесами, любящими ездить в “развалочку”. Но эти варианты относительно не дороги и вполне подойдут для начала работы.

Робот пылесос своими руками. Часть 2

Выдался выходной и пришли некоторые посылочки (прям как совпало). Распаковками мучать не народ нет желания, поэтому к делу. Решил все почти полностью разобрать чтобы удобней было внедрять новые «плюшки» ,а заодно и поведать о более детальном устройстве монстра)))

Снимаем самое сердце — электронику.

Крепится все на уголок для удобства разборки.

Снимаем «подметалки» . Шайбы компенсируют неровности самого мотор-редуктора.

Скидываем АКБ и DC-DC переобразователи. Кстати АКБ закреплял их стяжками к раме. Снизу все банки изолированы.

Вот кстати модель движка виднеется. Ссылки почти на все кину в конце поста.

Вот попутно еще фото реализации крепления колес.

Выемку сделал специально чтоб колесо на оси не проворачивалось.

Теперь снимаем сам пылесос.

Попутно еще фотки самого устройства пылесоса.

Чертеж крыльчатки есть в прошлом посте.

Ну теперь продолжим с самим монстром. Делаем новую площадку под ардуино мега и драйвер двигателей.

И примеряем чтоб не задевало крышку пылесборника.

Крепим «Мегу» к площадке через латунные стоечки. А драйвер просто на болтики чтоб по высоте не мешал будущему второму этажу.

Прикидываем второй этаж для экрана и датчиков (которые кстати все еще не пришли)

Теперь по деталюхам :

Аллюминиевый уголок — стоительный магаз.

Критика (по делу) и идеи по улучшению приветствуются. Надеюсь пост будет полезен кому нибудь. ВСЕМ ДОБРА.

Жаль что датчики не пришли. можно было бы уже обкатывать.

Продолжение постройки будет по мере появления всего необходимого

Ты я смотрю тоже минусы людям не ставишь)))))

В каждом ардуинщике помирает электронщик 🙂 травление не практикуешь?

не правда электронщик не умирает))) порой даже наоборот))) травлю платки по настроению. Благо опыт в это большой. Начинал еще в школьные годы с рисования дорожек нитролаком и травлением медным купоросом.

Тогда мне вас (в смысле ардуинщиков) не понять: плата стоит в 10 раз дороже чипа — это раз. Обвязку атмеге почти делать не надо — два. Каждый контакт который пин — 100% источник глюка в будущем, особенно на подвижной модели — три. Запилить себе платку, впаять несколько транзюков для управления двигателями, сделать выводы под программатор, экран, датчики и что там у тебя еще. хм. так похоже будет на вещь, а не на детскую поделку. (я прошу прощения, я ни в коем случае не учу и не навязываю своего мнения, просто в толк не возьму)

Что мне нравится в ардуинах так это модульность. Захотел что то изменить, заменил только часть конструкции а не всю конструкцию в целом. Так же ремонтопригодность отличная, а чтоб небыло глюков , я слегка приклеиваю пин (точнее их пластиковые части) к разьему горячим клеем, капли достаточно и шлейфы для готовой конструкции спаиваю всегда сам и креплю все провода стяжками. А по ценам китай радует клонами на любой вкус и малую цену: нано примерно 120 рублей с програматором на той же плате. Атмега 8 стоит примерно 55 рублей без платы и обвязки. Получается не сильно и дороже))). Можно самому паять всю конструкцию на одной плате когда сильно ограничено пространство корпуса. А глюки будут 100 процентов если собрать все на бредборде и так оставить в готовой подвижной модели.( Оскорбить чем либо никого не пытался. Все написанное мое чисто субьективное мнение)

А на сколько мощный такой пылесос получается? Он способен втягивать не только пыль и волосы, но и зерна, орешки, конфеты m&m например? Или тут все ограничивается мощностью двигателя?

Были проблемы с прочностью крыльчатки? Есть смысл её напечатать на 3д принтере, если возможность есть =)

Сам пылесос слабоватый. Тянет пыль, волосы, бумажки и тд. Но и работает тихо. Если поднять обороты раза в два (использовать другой двигатель) то тяга будет приемлимой, но и шуметь будет сильно, и энерго потребление будет высоким и сократится автономное время работы. Вот параметры которые мне нужны: тихая работа, долгое время автономной работы (по моим расчетам не менее 5 часов). А то что тяга самого пылесоса слабая то это для моих задач не решающий фактор, т.к и нужно лишь собирать мелкий мусор. А крыльчатку можно и на 3д принтере сделать и всю конструкцию самого пылесоса , но увы такой возможности нет..

Ссылка на основную публикацию
Adblock
detector